89 research outputs found

    Dendritic cells cross talk with tumor antigen-specific CD8+T cells, Vγ9γδT cells, and Vα24NKT cells in patients with glioblastoma multiforme and in healthy donors

    Get PDF
    The finding that dendritic cells (DCs) orchestrate innate and adaptive immune responses has stimulated research on harnessing DCs for developing more effective vaccines for DC therapy. The expression of cytomegalovirus (CMV) antigens in glioblastoma multiforme (GBM) presents a unique opportunity to target these viral proteins for tumor immunotherapy. Here, we demonstrate that Vγ9γδT cells, innate immune cells activated by zoledronate (Z), and Vα24NKT cells, innate/adaptive immune cells activated by α-galactosylceramide (G) can link innate and adaptive immunities through cross talk with IFN-DCs from patients with GBM and healthy donors in a way that can amplify the activation and proliferation of CMVpp65-specific CD8+T cells. The IFN-DCs derived from patients with GBM used in this study express lower levels of programmed death ligand (PDL)1 and PDL2 and higher levels of CCR7 than the most commonly used mature IL-4DCs. The expression level of programmed cell death 1 (PD1) on CD8+ T cells, including CMVpp65-specific CD8+T cells, expanded by IFN-DCs pulsed with the CMVpp65-peptide and Z plus G (IFN-DCs/P+Z+G) was lower than that expanded by IFN-DCs pulsed with the peptide alone (IFN-DCs/P). Multifunctional T cells, including HLA-A*0201-restricted CMVpp65-specific CD8+T cells, Vγ9γδT cells, and Vα24NKT cells, efficiently kill HLA-A*0201 positive GBM cell line expressing CMVpp65 protein (T98G). These findings indicate that DC therapy using IFN-DCs/P+Z+G and/or CTL therapy using CMVpp65-specific CD8+T cells expanded by IFN-DCs/P+Z+G may lead to a good clinical outcome for patients with GBM. This article is protected by copyright. All rights reserved

    Small-molecule Bcl-2 inhibitors sensitise tumour cells to immune-mediated destruction

    Get PDF
    The cytotoxic effects of anticancer immune cells are mediated by perforin/granzyme-B, Fas ligand and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), and therefore depend on intact apoptotic responses in target tumour cells. As killing by all three of these mechanisms is blocked by the frequently overexpressed antiapoptotic oncoprotein Bcl-2, we hypothesised that coexposure to a Bcl-2 inhibitor might enhance anticancer immune responses. We evaluated this in U937 lymphoma cells, and A02 melanoma cells, which both show strong Bcl-2 expression. Vα24+ Vβ11+ natural killer T (NKT) cells expanded from peripheral blood of normal donors (n=3) were coincubated with PKH26-labelled U937 cells, and cytotoxicity was determined by flow cytometry after annexin-V-FITC and 7-AAD staining. In all cases, addition of the HA14-1 small-molecule Bcl-2 inhibitor to the cocultures significantly increased apoptosis in the target U937 cells. Using a similar assay, killing of A02 cells by the cytotoxic T-lymphocyte clone 1H3 was shown to be amplified by coexposure to the potent small-molecule Bcl-2 inhibitor ABT-737. Experiments with immune effectors preincubated with concanamycin-A suggested that sensitisation to perforin/granzyme-B may underlie enhanced target-cell killing observed in the presence of Bcl-2 inhibitors. We conclude that immune destruction of malignant cells can be amplified by molecular interventions that overcome Bcl-2-mediated resistance to apoptosis

    In vitro anti-tumour activity of α-galactosylceramide-stimulated human invariant Vα24+NKT cells against melanoma

    Get PDF
    α-galactosylceramide (KRN 7000, α-GalCer) has shown potent in vivo anti-tumour activity in mice, including against melanoma and the highly specific effect of inducing proliferation and activation of human Vα24+NKT-cells. We hypothesized that human Vα24+NKT-cells activated by α-GalCer might exhibit anti-tumour activity against human melanoma. To investigate this, Vα24+NKT-cells were generated from the peripheral blood of patients with melanoma after stimulation with α-GalCer pulsed monocyte-derived dendritic cells (Mo-DCs). Vα24+NKT-cells did not exhibit cytolytic activity against the primary autologous or allogeneic melanoma cell lines tested. However, proliferation of the melanoma cell lines was markedly suppressed by co-culture with activated Vα24+NKT-cells (mean ± SD inhibition of proliferation 63.9 ± 1.3%). Culture supernatants of activated Vα24+NKT-cell cultures stimulated with α-GalCer pulsed Mo-DCs exhibited similar antiproliferative activities against melanoma cells, indicating that the majority of the inhibitory effects were due to soluble mediators rather than direct cell-to-cell interactions. This effect was predominantly due to release of IFN-γ, and to a lesser extent IL-12. Other cytokines, including IL-4 and IL-10, were released but these cytokines had less antiproliferative effects. These in vitro results show that Vα24+NKT-cells stimulated by α-GalCer-pulsed Mo-DCs have anti-tumour activities against human melanoma through antiproliferative effects exerted by soluble mediators rather than cytolytic effects as observed against some other tumours. Induction of local cytokine release by activated Vα24+NKT-cells may contribute to clinical anti-tumour effects of α-GalCer. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Tailored design of NKT-stimulatory glycolipids for polarization of immune responses

    Get PDF
    Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted
    corecore