1,410 research outputs found

    Tunneling of massive and charged particles from noncommutative Reissner-Nordstr\"{o}m black hole

    Full text link
    Massive charged and uncharged particles tunneling from commutative Reissner-Nordstrom black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordstrom black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a solution to the information loss problem. We also study thermodynamics of noncommutative horizon in this setup.Comment: 10 pages, 2 figure

    Spinning Loop Black Holes

    Full text link
    In this paper we construct four Kerr-like spacetimes starting from the loop black hole Schwarzschild solutions (LBH) and applying the Newman-Janis transformation. In previous papers the Schwarzschild LBH was obtained replacing the Ashtekar connection with holonomies on a particular graph in a minisuperspace approximation which describes the black hole interior. Starting from this solution, we use a Newman-Janis transformation and we specialize to two different and natural complexifications inspired from the complexifications of the Schwarzschild and Reissner-Nordstrom metrics. We show explicitly that the space-times obtained in this way are singularity free and thus there are no naked singularities. We show that the transformation move, if any, the causality violating regions of the Kerr metric far from r=0. We study the space-time structure with particular attention to the horizons shape. We conclude the paper with a discussion on a regular Reissner-Nordstrom black hole derived from the Schwarzschild LBH and then applying again the Newmann-Janis transformation.Comment: 18 pages, 18 figure

    Toward a Social Practice Theory of Relational Competing

    Get PDF
    This paper brings together the competitive dynamics and strategy-aspractice literatures to investigate relational competition. Drawing on a global ethnography of the reinsurance market, we develop the concept of micro-competitions, which are the focus of competitors’ everyday competitive practices. We find variation in relational or rivalrous competition by individual competitors across the phases of a micro-competition, between competitors within a micro-competition, and across multiple micro-competitions. These variations arise from the interplay between the unfolding competitive arena and the implementation of each firm’s strategic portfolio. We develop a conceptual framework that makes four contributions to: relational competition; reconceptualizing action and response; elaborating on the awareness-motivation-capability framework within competitive dynamics; and the recursive dynamic by which implementing strategy inside firms shapes, and is shaped by, the competitive arena

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE

    Noncommutative Inspired Reissner-Nordstr\"om Black Holes in Large Extra Dimensions

    Full text link
    Recently, a new noncommutative geometry inspired solution of the coupled Einstein-Maxwell field equations including black holes in 4-dimension is found. In this paper, we generalize some aspects of this model to the Reissner-Nordstr\"om (RN) like geometries with large extra dimensions. We discuss Hawking radiation process based on noncommutative inspired solutions. In this framework, existence of black hole remnant and possibility of its detection in LHC are investigated.Comment: 24 pages, 12 figures, revised version to appear in Commun. Theor. Phy

    Galactic rotation curves inspired by a noncommutative-geometry background

    Full text link
    This paper discusses the observed at rotation curves of galaxies in the context of noncommutative geometry. The energy density of such a geometry is diffused throughout a region due to the uncertainty encoded in the coordinate commutator. This intrinsic property appears to be sufficient for producing stable circular orbits, as well as attractive gravity, without the need for dark matter.Comment: 12 pages, 3 figures. Published in Gen.Rel.Grav. 44 (2012) 905-91

    TeV Mini Black Hole Decay at Future Colliders

    Full text link
    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation lead to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of String Theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions.By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3-Brane embedded into an higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and include the presence of D-branes. Furthermore, unification of fundamental interactions at an energy scale many order of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this article we review higher dimensional black hole decay, considering not only the emission of particles according to Hawking mechanism, but also their near horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear experimental signature of the event.Comment: 22 pages, 9 figures, 4 tables; ``quick review'' for Class. and Quantum Gra

    Soil amendment and slow release fertiliser preparation from castor meal.

    Get PDF
    This work seeks to determine the best methods of production of partly carbonized waste of biodiesel industry - castor (Ricinus communis) meal - aimed at obtaining material comparable to organic matter of soils Terras Pretas de ĂŤndios to be used as a soil amendment and as a matrix material to prepare slow release fertilizers

    Minimum length effects in black hole physics

    Full text link
    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014
    • …
    corecore