200 research outputs found

    Dereplicazione di "miceli sterili" mediante tecniche di fingerprinting molecolare

    Get PDF
    Il significato principale del termine dereplicazione fa riferimento alla biochimica: indica il processo con cui componenti facenti parte di una sostanza più complessa, vengono analizzati per riconoscere ed eliminare le sostanze attive già studiate. Tale concetto è stato utilizzato anche per semplificare l’analisi di comunità di organismi campionati, al fine di identificare individui uguali non distinguibili da un punto di vista morfologico o strutturale. In questo lavoro la dereplicazione è stata applicata allo studio di miceli sterili, mediante l’analisi di fingerprinting molecolari ottenuti amplificando il DNA genomico con il minisatellite M13. La tecnica del fingerprinting molecolare utilizzando l’M13 come sonda è stata utilizzata per differenziare funghi filamentosi a livello di genere e di specie consentendo, inoltre, l’individuazione di cloni di un singolo isolato attraverso fingerprinting identici. Non vi sono notizie di lavori di dereplicazione di funghi filamentosi con l’utilizzo del minisatellite M13 come primer in esperimenti di PCR. I miceli sterili sono definiti “funghi che mancano della produzione di spore di ogni tipo”. Poichè la sistematica fungina è basata sulla morfologia e sulla strutture delle spore, la loro completa assenza rende i miceli sterili virtualmente non identificabili, né a livello di famiglia, né di genere o specie. Tuttavia, l’approfondimento delle conoscenze biologiche, fisiologiche e tassonomiche su tali funghi, spesso trascurati per le notevoli difficoltà che si incontrano nel loro studio, risulta di estremo interesse viste le loro potenzialità applicative come promotori della crescita delle piante o agenti di biocontrollo. In questo lavoro sono stati analizzati 99 miceli sterili, isolati da paglia interrata in due terreni (sabbioso e argilloso) con una precedente storia di coltivazione a frumento. L’isolamento è stato effettuato nel corso di una prova per la competizione per la paglia da parte di funghi filamentosi in presenza di Deossinivalenolo. Il DNA estratto è stato amplificato con il primer M13 e i prodotti di PCR sono stati separati mediante elettroforesi su gel di agarosio ottenendo fingerprinting con un numero di bande compreso tra 4 e 9, negli isolati campionati dal terreno sabbioso, e tra 4 e 13, negli isolati provenienti dal terreno argilloso. Per entrambi i terreni, i dati ottenuti dall’analisi delle bande di ciascun isolato sterile, sono stati utilizzati per costruire una matrice binaria, in cui 1 indica la presenza e 0 l’assenza della banda di ogni isolato. E’ stata quindi elaborata, con il programma Past, una matrice di somiglianza utilizzando il coefficiente Jaccard, dalla quale è stato poi costruito un dendogramma con il metodo UPGMA. L’analisi cluster dei 42 miceli sterili provenienti dal terreno sabbioso, ha evidenziato la presenza di 6 gruppi di isolati con fingerprinting identici e una similarità del 100%. L’analisi ha consentito, inoltre, di individuare un cluster di 11 isolati con profili elettroforetici molto simili (similarità 80%). Per il terreno argilloso, l’analisi cluster dei 57 miceli sterili ha mostrato la presenza di 13 gruppi di isolati con fingerprinting identici e una similarità del 100%. Dal dendrogramma è emersa, inoltre, la presenza di due cluster rispettivamente di 5 e 6 isolati con fingerprinting molto simili e percentuali di similarità pari a 75 e 88. I rimanenti isolati si sono raggruppati in numerosi cluster con una somiglianza inferiore al 60%. La dereplicazione dei miceli sterili è stata, quindi, effettuata in entrambi i tipi di terreno. Nel terreno sabbioso sono stati dereplicati 11 miceli sterili sui 42 analizzati (26%) e nel terreno argilloso ne sono stati dereplicati 20 sui 57 inizialmente saggiati (35%). I risultati ottenuti nel presente lavoro possono essere considerati incoraggianti per sviluppare la metodologia di dereplica di miceli sterili mediante l’analisi di fingerprinting molecolari ottenibili con il primer M13. L’approccio impiegato consente di ridurre considerevolmente il numero di individui da analizzare nel caso in cui si conducano indagini su comunità fungine complesse nelle quali sono comunemente presenti miceli sterili

    Abnormal hippocampal melatoninergic system: a potential link between absence epilepsy and depression-like behavior in WAG/Rij rats?

    Get PDF
    Absence epilepsy and depression are comorbid disorders, but the molecular link between the two disorders is unknown. Here, we examined the role of the melatoninergic system in the pathophysiology of spike and wave discharges (SWDs) and depression-like behaviour in the Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat model of absence epilepsy. In WAG/Rij rats, SWD incidence was higher during the dark period of the light-dark cycle, in agreement with previous findings. However, neither pinealectomy nor melatonin administration had any effect on SWD incidence, suggesting that the melatoninergic system was not involved in the pathophysiology of absence-like seizures. Endogenous melatonin levels were lower in the hippocampus of WAG/Rij rats as compared to non-epileptic control rats, and this was associated with higher levels of melatonin receptors in the hippocampus, but not in the thalamus. In line with the reduced melatonin levels, cell density was lower in the hippocampus ofWAG/Rij rats and was further reduced by pinealectomy. As expected, WAG/Rij rats showed an increased depression-like behaviour in the sucrose preference and forced swim tests, as compared to non-epileptic controls. Pinealectomy abolished the difference between the two strains of rats by enhancing depression-like behaviour in non-epileptic controls. Melatonin replacement displayed a significant antidepressant-like effect in bothWAG/Rij and control rats. These findings suggest that a defect of hippocampal melatoninergic system may be one of the mechanisms underlying the depression-like phenotype inWAG/Rij rats and that activation of melatonin receptors might represent a valuable strategy in the treatment of depression associated with absence epilepsy

    Secondary metabolites from the endophytic fungus Talaromyces pinophilus

    Get PDF
    Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture

    Genetic variants associated with gastrointestinal symptoms in Fabry disease.

    Get PDF
    Gastrointestinal symptoms (GIS) are often among the earliest presenting events in Fabry disease (FD), an X-linked lysosomal disorder caused by the deficiency of α-galactosidase A. Despite recent advances in clinical and molecular characterization of FD, the pathophysiology of the GIS is still poorly understood. To shed light either on differential clinical presentation or on intervariability of GIS in FD, we genotyped 1936 genetic markers across 231 genes that encode for drug-metabolizing enzymes and drug transport proteins in 49 FD patients, using the DMET Plus platform. All nine single nucleotide polymorphisms (SNPs) mapped within four genes showed statistically significant differences in genotype frequencies between FD patients who experienced GIS and patients without GIS: ABCB11 (odd ratio (OR) = 18.07, P = 0,0019; OR = 8.21, P = 0,0083; OR=8.21, P = 0,0083; OR = 8.21, P = 0,0083),SLCO1B1 (OR = 9.23, P = 0,0065; OR = 5.08, P = 0,0289; OR = 8.21, P = 0,0083), NR1I3 (OR = 5.40, P = 0,0191) and ABCC5 (OR = 14.44, P = 0,0060). This is the first study that investigates the relationships between genetic heterogeneity in drug absorption, distribution, metabolism and excretion (ADME) related genes and GIS in FD. Our findings provide a novel genetic variant framework which warrants further investigation for precision medicine in FD

    Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2

    Get PDF
    INTRODUCTION: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. METHODS: FVB-huHER2 were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. RESULTS: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-gamma production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. CONCLUSIONS: Anti-huHER2 antibodies elicited in the tolerant host exert antitumoral activity

    Stoichiometric Analysis of Shifting in Subcellular Compartmentalization of HSP70 within Ischemic Penumbra

    Get PDF
    : The heat shock protein (HSP) 70 is considered the main hallmark in preclinical studies to stain the peri-infarct region defined area penumbra in preclinical models of brain ischemia. This protein is also considered as a potential disease modifier, which may improve the outcome of ischemic damage. In fact, the molecule HSP70 acts as a chaperonine being able to impact at several level the homeostasis of neurons. Despite being used routinely to stain area penumbra in light microscopy, the subcellular placement of this protein within area penumbra neurons, to our knowledge, remains undefined. This is key mostly when considering studies aimed at deciphering the functional role of this protein as a determinant of neuronal survival. The general subcellular placement of HSP70 was grossly reported in studies using confocal microscopy, although no direct visualization of this molecule at electron microscopy was carried out. The present study aims to provide a direct evidence of HSP70 within various subcellular compartments. In detail, by using ultrastructural morphometry to quantify HSP70 stoichiometrically detected by immuno-gold within specific organelles we could compare the compartmentalization of the molecule within area penumbra compared with control brain areas. The study indicates that two cell compartments in control conditions own a high density of HSP70, cytosolic vacuoles and mitochondria. In these organelles, HSP70 is present in amount exceeding several-fold the presence in the cytosol. Remarkably, within area penumbra a loss of such a specific polarization is documented. This leads to the depletion of HSP70 from mitochondria and mostly cell vacuoles. Such an effect is expected to lead to significant variations in the ability of HSP70 to exert its physiological roles. The present findings, beyond defining the neuronal compartmentalization of HSP70 within area penumbra may lead to a better comprehension of its beneficial/detrimental role in promoting neuronal survival

    Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection?

    Get PDF
    Neurodegenerative disorders are characterized by excitotoxicity and neuroinflammation that finally lead to slow neuronal degeneration and death. Although neurons are the principal target, glial cells are important players as they contribute by either exacerbating or dampening the events that lead to neuroinflammation and neuronal damage. A dysfunction of the glutamatergic system is a common event in the pathophysiology of these diseases. Metabotropic glutamate (mGlu) receptors belong to a large family of G protein-coupled receptors largely expressed in neurons as well as in glial cells. They often appear overexpressed in areas involved in neurodegeneration, where they can modulate glutamatergic transmission. Of note, mGlu receptor upregulation may involve microglia or, even more frequently, astrocytes, where their activation causes release of factors potentially able to influence neuronal death. The expression of mGlu receptors has been also reported on oligodendrocytes, a glial cell type specifically involved in the development of multiple sclerosis. Here we will provide a general overview on the possible involvement of mGlu receptors expressed on glial cells in the pathogenesis of different neurodegenerative disorders and the potential use of subtype-selective mGlu receptor ligands as candidate drugs for the treatment of neurodegenerative disorders. Negative allosteric modulators (NAM) of mGlu5 receptors might represent a relevant pharmacological tool to develop new neuroprotective strategies in these diseases. Recent evidence suggests that targeting astrocytes and microglia with positive allosteric modulators (PAM) of mGlu3 receptor or oligodendrocytes with mGlu4 PAMS might represent novel pharmacological approaches for the treatment of neurodegenerative disorders

    Nutraceutical characterization of anthocyanin-rich fruits produced by «Sun Black» tomato line

    Get PDF
    Tomato (Solanum lycopersicum L.) is one of the most cultivated vegetable in the world and it represents a large source of bioactive compounds, including carotenoids and polyphenols (phenolic acids and flavonoids). However, the concentration of flavonoids in tomato is considered sub-optimal, particularly because anthocyanins are not generally present. Therefore, this crop has been the object of an intense metabolic engineering in order to obtain anthocyanin-enriched tomatoes by using either breeding or transgenic strategies. Some wild tomato species, such as S. chilense and S. cheesmaniae, biosynthesize anthocyanins in the fruit sub-epidermal tissue, and some alleles from those genotypes have been introgressed into a new developed purple tomato line, called “Sun Black” (SB). It is a tomato line with a purple skin color, both in green and in red fruit stages, due to the biosynthesis of anthocyanins in the peel, and a normal red color pulp, with a taste just like a traditional tomato. SB is the result of a breeding programme and it is not a genetically modified (GM) product. We report the chemical characterization and structure elucidation of the attractive anthocyanins found in the peel of SB tomato, as well as other bioactive compounds (carotenoids, polyphenols, vitamin C) of the whole fruit. Using one- and two-dimensional NMR experiments, the two main anthocyanins were identified to be petunidin 3-O-[6″-O-(4‴-O-E-p-coumaroyl-α-rhamnopyranosyl) -β-glucopyranoside]-5-O-β-glucopyranoside (petanin) and malvidin 3-O-[6″-O-(4‴-O-E-p-coumaroyl-α-rhamnopyranosyl)-β-glucopyranoside]-5-O-β-glucopyranoside (negretein). The total anthocyanins in the whole ripe fruit was 1.2 mg/g dry weight (DW); 7.1 mg/100 g fresh weight (FW). Chlorogenic acid (the most abundant phenolic acid) was 0.6 mg/g DW; 3.7 mg/100 g FW. The main flavonol, rutin was 0.8 mg/g DW; 5 mg/100 g FW. The total carotenoid content was 211.3 μg/g DW; 1,268 μg/100 g FW. The total phenolic content was 8.6 mg/g DW; 52.2 mg/100 g FW. The vitamin C content was 37.3 mg/100 g FW. The antioxidant activities as measured by the TEAC and ORAC assays were 31.6 and 140.3 μmol TE/g DW, respectively (193 and 855.8 μmol TE/100 g FW, respectively). The results show the unique features of this new tomato genotype with nutraceutical properties.publishedVersio

    The Autophagy-Related Organelle Autophagoproteasome Is Suppressed within Ischemic Penumbra

    Get PDF
    The peri-infarct region, which surrounds the irreversible ischemic stroke area is named ischemic penumbra. This term emphasizes the borderline conditions for neurons placed within such a critical region. Area penumbra separates the ischemic core, where frank cell loss occurs, from the surrounding healthy brain tissue. Within such a brain region, nervous matter, and mostly neurons are impaired concerning metabolic conditions. The classic biochemical marker, which reliably marks area penumbra is the over-expression of the heat shock protein 70 (HSP70). However, other proteins related to cell clearing pathways are modified within area penumbra. Among these, autophagy proteins like LC3 increase in a way, which recapitulates Hsp70. In contrast, components, such as P20S, markedly decrease. Despite apparent discrepancies, the present study indicates remarkable overlapping between LC3 and P20S redistribution within area penumbra. In fact, the amount of both proteins is markedly reduced within vacuoles. Specifically, a massive loss of LC3 + P20S immuno-positive vacuoles (autophagoproteasomes) is reported here. This represents the most relevant sub-cellular alteration here described in cell clearing pathways within area penumbra. The functional significance of these findings remains to be determined and it will take a novel experimental stream to decipher the fine-tuning of such a phenomenon
    corecore