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Neurodegenerative disorders are characterized by excitotoxicity and neuroinflammation
that finally lead to slow neuronal degeneration and death. Although neurons are the
principal target, glial cells are important players as they contribute by either exacerbating
or dampening the events that lead to neuroinflammation and neuronal damage.
A dysfunction of the glutamatergic system is a common event in the pathophysiology
of these diseases. Metabotropic glutamate (mGlu) receptors belong to a large family of
G protein-coupled receptors largely expressed in neurons as well as in glial cells. They
often appear overexpressed in areas involved in neurodegeneration, where they can
modulate glutamatergic transmission. Of note, mGlu receptor upregulation may involve
microglia or, even more frequently, astrocytes, where their activation causes release of
factors potentially able to influence neuronal death. The expression of mGlu receptors
has been also reported on oligodendrocytes, a glial cell type specifically involved in
the development of multiple sclerosis. Here we will provide a general overview on the
possible involvement of mGlu receptors expressed on glial cells in the pathogenesis of
different neurodegenerative disorders and the potential use of subtype-selective mGlu
receptor ligands as candidate drugs for the treatment of neurodegenerative disorders.
Negative allosteric modulators (NAM) of mGlu5 receptors might represent a relevant
pharmacological tool to develop new neuroprotective strategies in these diseases.
Recent evidence suggests that targeting astrocytes and microglia with positive allosteric
modulators (PAM) of mGlu3 receptor or oligodendrocytes with mGlu4 PAMS might
represent novel pharmacological approaches for the treatment of neurodegenerative
disorders.

Keywords: neurodegeneration, metabotropic glutamate receptor, transforming growth factor-β1, apoptosis,
neuroprotection

INTRODUCTION

Neurodegenerative disorders, among the most prevalent, devastating and yet poorly treated
illnesses are progressive diseases characterized by slow neuronal death. Dysfunction of
glutamatergic transmission plays a central role in the pathogenesis of neurodegenerative diseases
(Nguyen et al., 2011). Malfunctioning or aberrant expression of glutamate transporters leads in fact
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to the accumulation of this neurotransmitter followed by over-
activation of ionotropic glutamate receptors, mainly NMDA
receptors, a primary event in the pathophysiology of neuronal
damage. Activation of NMDA and/or AMPA receptor lacking the
GluR2 subunit (Dugan and Choi, 1994; Zipfel et al., 2000), leads
to an excessive influx of extracellular Ca++ that triggers a cascade
of events leading to apoptotic and necrotic death. This occurs
both in acute and chronic neurodegenerative conditions such as
AD, ischemia, ALS (Doble, 1999; Hardingham and Bading, 2003).

The underlying context is a condition of neuroinflammation,
defined as an innate immunological response of the nervous
system, involving glial cells, microglia, astrocytes, and cytokines,
chemokines, ROS, and other factors they release (Kim and
de Vellis, 2005; Block and Hong, 2007; Benatti et al., 2016).
Excitotoxicity and neuroinflammation are strictly interconnected
since increased extracellular levels of glutamate critically favor
activation of glial cells and promotion of neuroinflammatory
phenomena in the brain (Olmos and Llado, 2014). In this
scenario, glial cells (astrocytes, microglia, and oligodendrocytes)
reciprocally interact to contribute to the pathophysiology of
neurodegeneration. Under physiological conditions, astrocytes
play a key role in the homeostatic control of CNS environment,
by removing glutamate from the extracellular space through
specific transporters, GLAST and GLT1 (Oliet et al., 2001),
as well as by controlling formation (Ullian et al., 2001) and
pruning of synapses in response to changes of neuronal activity
(Stevens et al., 2007). Dysfunction of astrocytes causes glutamate
accumulation with ensuing excitotoxicity (Werner et al., 2001).
Reactive astrocytes can further precipitate neuroinflammation
(Verite et al., 2018) through the release of pro-inflammatory
cytokines and chemokines, including CCL2, which recruits
peripheral monocytes into the CNS. Accordingly, apoptotic
astrocytes and reactive astrogliosis critically contribute to
neurodegenerative processes in different forms of dementia
(Heneka et al., 2010) including AD (Kobayashi et al., 2002),
vascular (Tomimoto et al., 1997), and frontotemporal dementia
(Martin, 2000).

Microglial cells are professional phagocytes (Gomez-Nicola
and Perry, 2015) that regulate synapses pruning (Schafer et al.,
2012) and phagocytosis of cells undergoing programmed death,
both during development and in the mature healthy brain. They
also support immune surveillance in the CNS (Zabel and Kirsch,

Abbreviations: 6-OHDA, 6-hydroxydopamine; AD, Alzheimer disease; AMPA,
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor; ASL, amyotrophic
lateral sclerosis; Aβ, beta amyloid; BBB, blood brain barrier; BDNF, brain
derived neurotrophic factor; CHPG, (RS)-2-chloro-5-hydroxyphenylglycine;
CCL2, monocyte chemoattractant protein-1; CNS, central nervous system;
DHPG, (S)-3,5-dihydroxyphenylglycine; EGF, epidermal growth factor; FGF,
fibroblast growth factor; GalC+, galactocerebroside; GLAST, L-glutamate/L-
aspartate transporter; GLT-1, glutamate transporter-1; IL-6, interleukin 6; JNK,
c-Jun N-terminal kinase; L-AP4, L-(+)-2-amino-4-phosphonobutyric acid; LPS,
lipopolysaccharide; LTP, long term potentiation; MBP, myelin basic protein; mGlu,
metabotropic glutamate receptor; MPEP, 2-methyl-6-(phenylethynyl)pyridine;
MS, Multiple sclerosis; NAM, negative allosteric modulator; NMDA, N-methyl-D-
aspartate receptor; NMO, neuromyelitis optica; OGD, oxygen glucose deprivation;
OPC, oligodendrocytes progenitor cell; PAM, positive allosteric modulator; PD,
Parkinson disease; PI3K, phosphatidylinositol-3-kinase; ROS, reactive oxygen
species; sAPPα, soluble amyloid precursor protein; SCI, spinal cord injury; SOD-1,
superoxide dismutase; TBI, traumatic brain injury; TGF-β1, transforming growth
factor β1; TNFα, tumor necrosis factor α; TrkB, tyrosin receptor kinase B.

2013). In response to a prolonged inflammatory stimulus or to
the accumulation of misfolded proteins, such as aggregated Aβ,
α-synuclein, mutant huntingtin, SOD1, hyperactivated microglia
can amplify neurodegeneration, by releasing pro-inflammatory
cytokines (Block and Hong, 2007; Mosher and Wyss-Coray,
2014; Streit and Xue, 2014) and ROS (Wilkinson and Landreth,
2006; Dewapriya et al., 2013). Microglia also strongly influence
glutamatergic transmission by regulating the expression of
glutamate receptors and transporters in neighbor cells (Aronica
et al., 2005a; Pickering et al., 2005; Tilleux et al., 2007). Increased
extracellular levels of glutamate under pathological conditions,
induce microglia chemotaxis to the injury site, through activation
of both ionotropic and mGlu receptors expressed in microglia
cells (Liu et al., 2009).

In addition to astrocytes and microglia, oligodendrocytes
have an essential role in maintaining CNS homeostasis
by supporting neuronal myelination and protecting axonal
membrane (Rosenbluth, 2009; Bakiri et al., 2011; Harris and
Attwell, 2012). Oligodendrocyte dysfunction is mainly involved
in the pathogenesis of classical demyelinating diseases (MS
and NMO) and leukodystrophies (Fellner and Stefanova, 2013;
Ettle et al., 2016). Recent studies suggest that ischemic insults,
trauma, and accumulation of abnormal protein aggregates (i.e.,
α-synuclein, tau, PrP) also cause oligodendrocytes malfunction,
leading to myelin disruption and thus neuronal conduction
impairment, as reviewed in Ferrer (2018).

mGlu RECEPTORS IN GLIAL CELLS:
DISTRIBUTION AND FUNCTION

As stated above, glutamate, through the activation of ionotropic
receptors, plays a central role in the onset of excitotoxicity.
Glutamate activates also a class of G-protein coupled receptors,
mGlu receptors, that form a family of eight subtypes (mGlu1 to
mGlu8) subdivided into three groups on the basis of their amino
acid sequence, G-protein coupling, and pharmacological profile.
Group I includes mGlu1 and mGlu5 receptors, which are coupled
to Gq/G11 and are functionally linked to polyphosphoinositide
hydrolysis and negatively coupled with K+ channels (Abdul-
Ghani et al., 1996; Nicoletti et al., 2011). Group II (mGlu2,
mGlu3) and group III (mGlu4, mGlu6, mGlu7, mGlu8) subtypes
are coupled to Gi/Go, negatively regulate adenylate cyclase, but
can also activate MAP kinase and PI-3-kinase pathways (Iacovelli
et al., 2002; Niswender and Conn, 2010; Nicoletti et al., 2011).

mGlu receptors are widely distributed in the CNS, where
they are localized at synaptic and extra synaptic levels in
neurons and glia. Group I mGlu receptors are generally localized
postsynaptically, surrounding ionotropic receptors, and they
modulate depolarization and synaptic excitability. Group II and
III are mostly expressed at presynaptic level and control the
release of neurotransmitters as reviewed in Niswender and Conn
(2010), Ribeiro et al. (2017). mGlu receptor subtypes form
homo- and heterodimers (Kammermeier, 2012; Yin et al., 2014;
Vafabakhsh et al., 2015). In addition, Gi-coupled mGlu receptors
dimerize with other receptors coupled to Gq such as 5-HT2A,
β1-adrenergic, and GABAB receptors (Pin and Bettler, 2016).
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Evidence of functional interactions between mGlu receptors and
estrogen receptors in neurons also exists (Spampinato et al.,
2012b).

Intracellular signaling triggered by mGlu receptors has been
mainly studied in neuronal cells, whereas less is known in glial
cells (Gerber et al., 2007). Group I mGlu receptors activate MAP
kinase playing a key role in protein synthesis-dependent neuronal
plasticity (Gerber et al., 2007; Hellyer et al., 2017). Translation
and transcription factors targeted by MAPK cascades following
mGlu receptors activation have been well characterized (Gerber
et al., 2007). Group I mGlu receptors dependent phosphorylation
of JNKs increases transcription mediated by activator protein-
1 (Yang et al., 2006), whereas activation of p38 regulates NF-κB
(O’Riordan et al., 2006). More detailed analysis has been carried
out in glial cells, and specifically in astrocytes, where stimulation
of MAPK and PI3K pathways via mGlu3 receptor increases the
production of neurotrophic factors (Bruno et al., 1998; Caraci
et al., 2011; Durand et al., 2017) promoting neuroprotection
against different toxic insults (Ribeiro et al., 2017). When
moving to group III mGlu receptors, mGlu4 receptor activation
in cultured rat neural stem cells results in inhibition of JNK
and p38 mitogen-activated protein kinase, which downregulates
the expression of procaspase-8/9/3 and reverses the Bcl-2/Bax
balance, finally preventing H2O2-mediated cell death (Zhang
et al., 2015). A protective role for mGlu7 receptor has also been
recently found in glial cells and it involves the activation of
PI3K/Akt and MAPK/ERK1/2 pathways (Jantas et al., 2018).

According to the principles of “ligand bias” and “functional
selectivity,” a G-protein coupled receptor can signal via a
canonical pathway mediated by the Gα subunit and via
non-canonical pathways (e.g., MAPK activation) mediated by
scaffolding proteins such as β-arrestin (Iacovelli et al., 2014;
Hathaway et al., 2015). Recent evidence suggests that mGlu
receptors associate with β-arrestin in the initiation of intracellular
cascades affecting cellular responses (Hathaway et al., 2015;
Hellyer et al., 2017). The recruitment of β-arrestin-dependent
signaling pathways occurs in response to G-protein coupled
Receptor Kinase (GRK)-dependent phosphorylation and it is
strictly ligand-dependent (Hellyer et al., 2017). Future studies
are needed in astrocytes and microglial cells to assess whether
specific ligands with a functional selectivity can exert different
effects on intracellular signaling pathways (e.g., MAPK and PI3K)
in neuronal and glial cells.

Of note, the expression of mGlu receptors is developmentally
regulated. mRNA levels for mGlu1, mGlu2, and mGlu4 receptors
are low at birth and increase during postnatal development
(Lujan et al., 2005). In addition, the expression of the shorter
mGlu5a receptor isoform is higher in prenatal stages, and
mainly detected in cortex, hippocampus and subventricular zone,
where it colocalizes with neural progenitors (Boer et al., 2010),
astrocytes and microglia. In contrast, in mature brain, mGlu5b
receptor is the main isoform expressed (Romano et al., 2002;
Lujan et al., 2005).

In glial cells, mGlu1, mGlu3, and mGlu5 receptors are
found in astrocytes whereas mGlu2, mGlu3, and mGlu5
receptors are expressed in microglial cells. In oligodendrocytes,
mGlu1 and mGlu4 are highly expressed (Ribeiro et al., 2017),

whereas mGlu5a and mGlu2/3 receptors are present in early
developmental stages and downregulated in mature MBP+
oligodendrocytes (Luyt et al., 2003; Deng et al., 2004; Spampinato
et al., 2014).

Glial mGlu receptors regulate glial cell proliferation (Ciccarelli
et al., 1997), the release of growth factors, cytokines (Ciccarelli
et al., 1999; Aronica et al., 2005b), and neurotransmitters
including glutamate, ATP and adenosine, which propagate Ca++
signaling between astrocytes and other glial cells (Hamilton
et al., 2010). Glial mGlu receptors modulate also the activity
and the expression of glutamate transporters, thus participating
in the regulation of synaptic function (Aronica et al., 2003b;
Vermeiren et al., 2005). Glutamatergic system plays a key
role in the pathophysiology of chronic pain and in particular
in central sensitization (Guida et al., 2015; Hossain et al.,
2017) and neurodegenerative processes leading to cognitive
deficits (Giordano et al., 2012). Microglial activation significantly
contributes to central sensitization and neurodegeneration
promoting the transition from acute to chronic pain (Ji et al.,
2014; Hossain et al., 2017). According to this scenario mGlu
receptors expressed on glial cells (microglia and astrocytes)
might exert a key role in the pathogenesis of chronic pain
by modulating both glutamate release and neuroinflammatory
phenomena (Chiechio, 2016; Palazzo et al., 2017).

GROUP I mGlu RECEPTORS

In physiological conditions, the expression of mGlu1 receptor is
very low in astrocytes as well as in cultured cortical astrocytes
grown in conventional media. In contrast, the expression is
higher in reactive astrocytes of ALS spinal cord (Agrawal et al.,
1998; Aronica et al., 2001; Anneser et al., 2004).

Expression of mGlu5 in astrocytes is high prenatally, but
decreases after birth (Cai et al., 2000; Yang et al., 2012; Iyer
et al., 2014). In physiological conditions, the activity of mGlu5
receptor in cortical astrocytes defines the frequency of Ca++
oscillations (Bradley and Challiss, 2011) and the release of
gliotransmitters (Agulhon et al., 2008; Fiacco et al., 2009). mGlu5
overexpression has been reported in different neurodegenerative
disorders (Ribeiro et al., 2017), in particular in reactive astrocytes
surroundings Aβ plaques (Shrivastava et al., 2013), spinal cord
lesions (Gwak and Hulsebosch, 2005), MS lesion (Geurts et al.,
2003), ALS (Aronica et al., 2001), PD (Tison et al., 2016), and
in hippocampal astrocytes from Down syndrome patients (Iyer
et al., 2014).

Accordingly, in vitro, mGlu5 receptor expression occurs as a
reactive response: both mRNA and protein levels are induced in
astrocytes grown in media enriched with growth factors (FGF,
EGF, TGF-β1) (Miller et al., 1995; Balazs et al., 1997), or exposed
to Aβ oligomers (Casley et al., 2009; Lim et al., 2013).

mGlu5 receptor actively regulates glutamate transmission,
acting as a sensor of extracellular glutamate concentrations
and inducing activation of the glial glutamate transporter
GLT-1 (Vermeiren et al., 2005). In contrast, after sustained
mGlu5 stimulation, both GLAST and GLT-1 activity are
reduced (Aronica et al., 2003a). In astrocytes derived from
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hSOD1-G93A rats, an established model of ALS, increased
expression of mGlu5 receptor mRNA is accompanied by reduced
GLT-1 activity and enhanced glutamate-induced excitotoxicity
(Vermeiren et al., 2006). Similarly, the accumulation of the
glial glutamate and the consequent excitotoxicity described in a
mouse model of epilepsy have been related to mGlu5 receptor
overexpression in hippocampal astrocytes. Accordingly, the
mGlu5 receptor antagonist MPEP, attenuates gliotransmission,
preventing neuronal death, with no change of synaptic
transmission (Ding et al., 2007).

In the AD APPswe/PS1 transgenic mouse model, high
expression of mGlu5 receptor has been described in astrocytes
surroundings Aβ plaques, associated to Ca++ signaling
dysregulation and ATP abnormal release (Shrivastava et al.,
2013). As previously described for mGlu1 receptor in neurons
exposed to an excitotoxic insult (Spampinato et al., 2012a),
astrocytic mGlu5 receptor may activate two opposite pathways:
on one side, stimulation of phospholipase C, with ensuing
increased intracellular Ca++ concentrations, may lead to
cell death; on the other hand, however, this effect could be
counteracted by alternative activation of the ERK1/2 pathway,
through a Homer-dependent mechanism (Paquet et al., 2013).
Interestingly, in cultured cortical astrocytes, inflammatory
cytokines reduce the expression of mGlu5 receptor (Aronica
et al., 2005c; Berger et al., 2012), suggesting a protective
adaptation to prevent excitotoxicity (Berger et al., 2012).
Furthermore, pharmacological blockade of mGlu5 in astroglial
cells prevents motor neurons excitotoxicity (D’Antoni et al.,
2011). The inhibition of mGlu5 receptor activity on astrocytes
may contribute to the reduction of an inflammatory state in
the CNS. Treatment with the mGlu5 receptor antagonist MPEP
prevented in fact astrocytic secretion of the inflammatory
cytokines IL-6 and IL-8 (Shah et al., 2012).

In cultured microglia, the expression of mGlu1 receptor is
barely detectable (Byrnes et al., 2009), but it has been reported
in vivo in selected microglia cell populations in MS (Klaver
et al., 2013). Similarly, the expression of mGlu5 receptor mRNA
is low in cultured microglia compared to astrocytes. However,
PET imaging studies in animal models exposed to inflammatory
stimuli have shown that mGlu5 receptor activation reduced the
inflammatory response (Drouin-Ouellet et al., 2011).

In vitro, administration of the non-selective group I agonist
DHPG, reduced the number of activated microglia (Farso
et al., 2009), while the selective mGlu5 receptor agonist CHPG
prevented microglial proliferation induced by LPS (Huang et al.,
2018), microglial death induced by OGD (Ye et al., 2017),
and the expression of several inflammatory cytokines (Byrnes
et al., 2009; Loane et al., 2009; Beneventano et al., 2017). The
potential of mGlu5 receptor as a new pharmacological target
appears also very interesting in traumatic conditions, such as
spinal cord lesions or other traumatic events, where reactive
microglia, surroundings the area of the lesion, overexpress mGlu5
receptor. In both TBI models and spinal cord lesions, the delayed
CHPG administration, also one month after the traumatic event,
reduced the number of reactive microglia and the chronic post-
injury inflammation (Byrnes et al., 2012; Wang et al., 2013).
In TBI and spinal cord lesion, BBB damage may further

activate microglia, due to the access in the CNS of blood-borne
proteins such as fibrinogen, that induces microglial phagocytic
phenotype and the release of inflammatory cytokines, leading to
neurotoxicity (Piers et al., 2011). The BBB in normal conditions
prevents the access of fibrinogen and other proteins and immune
cells that are present in the blood, but its damage is a common
event in traumatic injuries (TBI, SCI), ischemic events and
neurodegenerative disorders (Zhao et al., 2015), such as AD,
where increased barrier permeability is observed (Spampinato
et al., 2017). In vitro, exposure of microglia to fibrinogen in
the presence of the Glu5 receptor PAM (CDPPB) prevented
microglia activation and neuronal toxicity (Piers et al., 2011),
further underlying the neuroprotective potential of mGlu5
agonists in reducing neuroinflammation.

(RS)-2-chloro-5-hydroxyphenylglycine may prevent micro-
glial activation by releasing BDNF and inducing expression
of its receptor Trkb, as observed in BV2 microglia cells (Ye
et al., 2017). Recently it has been demonstrated that microglia,
as many other cell types, communicate with the neighbor
cells through shedding of microvesicles that may represent a
cargo for neuromodulators, cytokines, and microRNA (Verderio,
2013). In BV2 microglia cells, CHPG induced an increased
release of microvesicles carrying the inflammatory miRNA146a
(Beneventano et al., 2017), suggesting a pro-inflammatory role
of mGlu5 receptor. It has also been suggested that LPS binds
directly to mGlu5 receptor inducing Ca++ oscillations and NF-
κB activity, while attenuating TNFα production (Liu et al., 2014).
All these data suggest that microglial mGlu5 receptor exerts an
ambivalent role in inflammation.

The neuroprotective potential of mGlu5 receptor agonist
CHPG in reducing microglia-induced neuroinflammation may
be limited by the fact that the drug has only partial
selectivity, poor BBB penetration, and induces a rapid receptor
desensitization (Homayoun and Moghaddam, 2010). mGlu5
receptor PAMs have been investigated as potential therapeutic
agents in neurological disorders (Xue et al., 2014). In vitro,
exposure of microglia to mGlu5 receptor PAMs has demonstrated
a better control in comparison to CHPG in preventing
microglia activation after inflammatory insults (Xue et al.,
2014). In vivo administration of the mGlu5 receptor PAM,
VU0360172, prevented neuronal loss in a TBI model in
mice by reducing microglia-induced inflammation (Loane
et al., 2014). An open question for future drug discovery
processes in neurodegenerative disorders remains how to
reconcile the protective effects observed with mGlu5 receptor
antagonists on astrocytes, in different experimental models of
neurodegeneration, with the anti-inflammatory action of mGlu5
receptor PAMs on microglia, as reported in TBI (Xue et al.,
2014). Furthermore we cannot forget that, in neurons, mGlu5
receptors physically interact with NMDA receptors playing a
permissive role in mechanisms of excitotoxic neuronal death
(Bruno et al., 2017). Accordingly, selective NAMs of mGlu5
receptors are consistently neuroprotective in models of PD and
AD (Bruno et al., 2017).

As already stated, the expression of group I mGlu receptors in
oligodendrocytes is stage dependent. mGlu1 receptor is expressed
in the somas of GalC+ oligodendrocytes in prenatal ages and
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during the first two postnatal weeks (P3–P14), while later on
mGlu1 receptor is localized exclusively at cell processes. mGlu5
receptor shows a similar distribution, although its expression
is lower than mGlu1 and it peaks earlier, at P3–P6. A similar
pattern is described in human white matter (Jantzie et al., 2010).
Both oligodendrocytes and OPC are very sensitive to glutamate
mediated toxicity after hypoxia-ischemia (Deng et al., 2003; Fern
et al., 2014) and in MS (Macrez et al., 2016). Activation of mGlu1
receptor by DHPG prevented OPC death induced by kainate
(Kelland and Toms, 2001; Deng et al., 2004) and non-excitotoxic
agents by maintaining the intracellular levels of glutathione and
thus reducing oxidative stress (Deng et al., 2004). mGlu5 receptor
activation prevented also staurosporine-induced OPC death
(Luyt et al., 2006). Starting from this evidence, selective group
I mGlu receptor agonists have been studied in periventricular
leukomalacia, a condition characterized by OPC damage, that
affects the white matter in premature infants after hypoxia-
ischemia (Jantzie et al., 2010). Butt et al. (2017) demonstrated that
group I receptor agonists can prevent hypoxia-ischemia-induced
oligodendrocyte death at all stages of differentiation. Further
studies are needed to establish the role of mGlu1 receptor as a
new pharmacological target to prevent oligodendrocyte loss in
neurodegenerative disorders such as MS, where OPCs are highly
vulnerable to excitotoxic damage (Newcombe et al., 2008).

GROUP II mGlu RECEPTORS

Group II includes mGlu2 and mGlu3 receptors, which are
coupled to Gi/Go proteins and have been recently studied as a
relevant pharmacological target in neurodegenerative disorders
(Bruno et al., 2017). Both mGlu2 and mGlu3 receptors are
preferentially localized in the pre-terminal region of axon
terminals, where they negatively regulate neurotransmitter
release. Only mGlu3 receptor is expressed in astrocytes and is
present at all developmental stages (Sun et al., 2013), whereas
microglial cells express both mGlu2 and mGlu3 receptors (Geurts
et al., 2003). mGlu2/3 receptors levels increase in astrocytes in
response to FGF and EGF (Aronica et al., 2003a) and after
exposure to pro-inflammatory cytokines (TNFα and IL-1β)
(Berger et al., 2012). mGlu3 receptor actively participates in the
control of extracellular glutamate by increasing the expression
of GLAST and GLT-1 (Gegelashvili et al., 2000; Aronica et al.,
2003a; Yao et al., 2005; Zhou et al., 2006). Hence, the use of
mGlu3 receptor agonists and/or PAMs has been proposed in
the treatment of ALS in which a defect of GLT-1 has been
well described (Rothstein et al., 1995; Battaglia et al., 2015).
In addition, astrocytic mGlu3 receptors, through activation of
MAPK and PI3K pathways, lead to neuroprotection by increasing
synthesis and secretion of neurotrophic factors (Bruno et al.,
2017), among others, TGF-β1, that prevents both NMDA- and
Aβ-induced toxicity on neurons (Bruno et al., 1998; Corti et al.,
2007; Caraci et al., 2011) and GDNF. The latter is an established
neurotrophic agent for nigral dopaminergic neurons, and has
shown neuroprotective and restorative activity in a variety of
preclinical models of parkinsonism (Ibanez and Andressoo,
2017). It also protects cultured spinal motor neurons from

excitotoxicity (Battaglia et al., 2015). Pharmacological activation
of mGlu3 receptor in mice increases GDNF mRNA and protein
levels in striatal neurons (Battaglia et al., 2009). Hence, selective
mGlu3 receptor enhancers may be effective in slowing neuronal
degeneration in different conditions such as ALS (Battaglia et al.,
2015) and PD (Bruno et al., 2017).

In this regard, a glial-neuronal interaction mediated by
astrocytic mGlu3 receptors seems to play a critical role. Early
studies have shown that mGlu2/3 receptors agonists protect
cortical neurons against excitotoxic death only in the presence
of astrocytes (Caraci et al., 2012; Bruno et al., 2017). Studies
carried out in cultured astrocytes from mGlu3(−/−) mice (Corti
et al., 2007; Caraci et al., 2011; Battaglia et al., 2015) have
clearly demonstrated the key role of astrocytic mGlu3 receptor
in mediating the neuroprotective effects of mGlu2/3 receptor
agonists. Activation of mGlu3 receptor activity also protects
astrocytes from OGD (Ciccarelli et al., 2007) and nitric oxide
damage, due to the reduction of cAMP content and consequent
activation of PI3K/Akt pathway (Durand et al., 2010, 2013).

mGlu3 receptor might represent a relevant pharmacological
target to develop disease-modifying drugs in AD (Caraci et al.,
2018a). Although no clear data are available in human AD brains,
mGlu3 receptor expression appears reduced in several animal
models of AD (Dewar et al., 1991; Cha et al., 2001; Durand
et al., 2014; Knezevic and Mizrahi, 2018). When treated with the
mGlu2/3 receptor agonist LY379268, astrocytes in vitro reduced
neuronal Aβ toxicity through the release of neuroprotective
factors such as TGF-β1 (Caraci et al., 2011) and BDNF (Durand
et al., 2017). TGF-β1 is known to exert anti-inflammatory and
neuroprotective effects in experimental models of AD (Chen
et al., 2015), and stimulates Aβ clearance by microglia (Tichauer
and von Bernhardi, 2012). It also exerts a key role in synaptic
plasticity and memory formation promoting the transition from
early to late LTP (Caraci et al., 2015). A selective deficit of
TGF-β1 signaling has been found in an early phase of AD
and appears to critically contribute to neuroinflammation and
cognitive decline in AD (Caraci et al., 2018b). Rescue of TGF-
β1 signaling represents therefore a new pharmacological strategy
to yield neuroprotection in AD. Activation of mGlu3 receptor
can positively interfere also with other relevant steps of AD
pathogenesis by reducing Aβ production (Durand et al., 2014) or
increasing Aβ clearance (Durand et al., 2017). Astroglial mGlu3
receptors stimulate the activity of α-secretase, the enzyme that
cleaves APP downstream of the N-terminus domain of Aβ(1−42)

(Durand et al., 2014). When exposed to LY379268, astrocytes
reduce the levels of β-secretase, while increasing the expression
of sAPPα, thereby reducing neurotoxic Aβ. Recently, it has
been demonstrated that LY379268 can increase Aβ uptake in
astrocytes and microglia, finally promoting Aβ removal from the
extracellular space (Durand et al., 2017). The contribution of
mGlu3 receptor seems equivocal because Aβ phagocytosis was
not prevented by LY2389575, a selective mGlu3 receptor NAM,
suggesting that the effects observed after LY379268 stimulation
can also involve mGlu2 receptor activation (Durand et al., 2017).

Microglia respond to Aβ with increased glutamate release
(Barger and Basile, 2001). Exposure of microglial cells to
the active fragment Aβ(25−35) induces also mGlu2 receptor
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activation, that can lead to increased neurotoxicity (Taylor et al.,
2002, 2005). Activation of mGlu2, but not mGlu3 receptors,
promotes in fact a pro-inflammatory and neurotoxic phenotype
that releases TNF-α and FAS-L, and enhanced microglial
reactivity in response to chromogranin-A, up-regulated in AD
(Taylor et al., 2002, 2005).

An open question remains whether activation of microglial
mGlu3 receptor can promote the release of TGF-β1, then
contributing to the overall neuroprotective activity of LY379268
observed in Aβ-treated mixed neuronal cultures (Caraci et al.,
2011).

It is well known that microglial activation plays a central
role in the pathogenesis of MS (Strachan-Whaley et al., 2014).
Exposure to myelin fragments induces microglia activation
in vitro, promoting the release of glutamate and TNF-α,
followed by neuronal death. Interestingly, activation of microglial
mGlu2 receptor exacerbates myelin-evoked neurotoxicity, whilst
activation of mGlu3 receptor is protective (Pinteaux-Jones et al.,
2008).

Suboptimal neuroprotective effects of orthosteric mGlu2/3
receptor agonists have been observed in animal models of global
and focal brain ischemia (Bond et al., 1998; Bond et al., 2000),
probably due to the involvement of mGlu2 receptors expressed
in neurons (Corti et al., 2007; Motolese et al., 2015; Mastroiacovo
et al., 2017). However, the role of microglial mGlu2 receptor
in stroke ischemia has not been fully elucidated. mGlu2 and
mGlu3 receptors are expressed by microglia in the ischemic
penumbra, where apoptotic neuronal death develops slowly,
making this area more amenable to therapeutic intervention.
Microglial cells mediate neurotoxicity in the stroke penumbra
(Kaushal and Schlichter, 2008) and in experimental models of
ischemia, it has been demonstrated that glutamate, released by
“ischemic” neurons, activates microglia through group II mGlu
receptors with the following activation of NF-κB, induction of
TNF-α, and subsequent neuronal death (Kaushal and Schlichter,
2008). New studies should be conducted in cultured microglia
from mGlu2(−/−) mice to better understand the role of
microglial mGlu2 receptor in the pathophysiology of stroke
ischemia.

GROUP III mGlu RECEPTORS

The function of group III mGlu receptors in astrocytes has
not been fully explored. They are almost undetectable in gray
matter of normal human brains (Blumcke et al., 1996; Tang
and Lee, 2001), although the expression of mGlu4 receptor,
and occasionally of mGlu8 receptor, was described in reactive
astrocytes surrounding MS lesions (Geurts et al., 2005) as
well as in other pathological conditions (Tang and Lee, 2001;
Aronica et al., 2003b). The expression of mGlu4 receptor in
astrocytes cultured in vitro is still debated. Some studies, but
not others (Ciccarelli et al., 1997), reported the expression in
primary cortical cultures (?), and induction after exposure to LPS
(Spampinato et al., 2014). In contrast, mGlu7 receptor subtype
is not expressed in glial cells (Ciccarelli et al., 1997; Aronica
et al., 2001; Taylor et al., 2003). Of note, stimulation of mGlu7

and mGlu8 receptors may have a role in the differentiation of
progenitor cells in the ventral midbrain (Vernon et al., 2011).
Stimulation with the group III mGlu receptor agonist L-AP4
reduces in fact the proliferation of fetal mouse neocortical
progenitor, and promotes their differentiation toward an
oligodendrocytic and astrocytic phenotype (Nakamichi et al.,
2008).

One of the principal effects exerted by mGlu4 receptor
agonists is the reduction of the inflammatory response. The
expression of the chemoattractant chemokine Rantes (CCL5),
whose role in neuroinflammation has been well documented
(Sorensen et al., 1999), was significantly downregulated when
astrocytes were exposed to inflammatory cytokines in the
presence of L-AP4 (?). This in vitro evidence was supported
by reduction of the disability score in mice with experimental
autoimmune encephalomyelitis treated with l-AP4 (Besong et al.,
2002). In astrocyte and oligodendrocyte co-cultures, L-AP4
prompted astrocytic release of TGF-β1, preventing kainate-
induced cell death in oligodendrocytes (Spampinato et al., 2014).
In contrast, L-AP4 direct treatment on oligodendrocytes was
not able to prevent kainate-induced toxicity, but accelerated the
differentiation of OPC into mature MBP+ and fully branched
oligodendrocytes (Spampinato et al., 2014).

Acting on astrocytes, group III mGlu receptors may also
improve glutamate uptake, modulating the expression of both
GLT-1 and GLAST. Zhou et al. (2006) reported that L-AP4
prevented neurotoxicity of LPS-treated astrocytes, an effect
likely mediated by the increased expression of glutamate
transporters. Similar effects were reported in astrocytes exposed
to MPTP in the presence of mGlu4 receptor agonists (Yao
et al., 2005). In conditions of energy failure, e.g., ischemia,
GLT-1 may act paradoxically, running in a reverse mode and
thus aggravating the load of glutamate (Rossi et al., 2000;
Bonde et al., 2003). Under these conditions, stimulation of
mGlu4 receptor may prevent GLT-1 upregulation in reactive
astrocytes, thus reducing the aberrant glutamate transport
and contributing to neuroprotection (Rodriguez-Kern et al.,
2003).

In cultured microglia, the expression of mGlu4, 6 and
8 receptors has been clearly reported (Taylor et al., 2003).
In MS patients, mGlu8 receptor was described in the
microglial/macrophage line, in particular in the parenchyma and
perivascular cuff (Geurts et al., 2003). The overexpression of the
receptor in these areas may be induced by the presence of specific
cytokines and growth factors released by the environment
surrounding the lesions.

As reported (Taylor et al., 2003), agonists acting on group
III mGlu receptors prevent microglia activation in vitro. The
mechanisms involved in these processes were not clarified, but
the release of trophic factors from microglia (Conn and Pin,
1997), or reduced glutamate discharge (Taylor et al., 2003) could
be claimed. Glutamate may in fact act in a negative feedback
loop reducing its own release in inflammatory states (McMullan
et al., 2012). Further, in vitro exposure of microglia to the
mGlu4 receptor PAM, ADX88178, reduced the LPS-induced
expression of MHCII and iNOS, while reducing the release of
TNFα (Ponnazhagan et al., 2016).
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FIGURE 1 | The role of mGlu receptors in different glial cell types. Astrocytes express both mGlu3 and mGlu5 receptors. mGlu3 receptor stimulation initiates
mechanisms that induce neuroprotection, while mGlu5 receptor activity promotes neuronal damage. Hence, allowing pharmacological activation of mGlu 3 receptor
(GO!) and blocking mGlu5 receptor activity (STOP) in astrocytes could be valuable for the maintenance of neuronal health. Similarly, in microglia, mGlu3 receptor
stimulation plays beneficial effects on neurons (GO!), while blockade of mGlu2 (STOP) appears necessary to prevent neurotoxicity. Less defined is the function of glial
mGlu5 receptor that, playing a dual role, may be a more complex target for pharmacological intervention (Alert yellow sign). Pharmacological activation of both
mGlu1 and mGlu4 receptors, expressed in oligodendrocytes, appear to be neuroprotective (GO! sign).

mGluR4, for its anatomical distribution and function, seems
to be an interesting pharmacological target for the treatment
of PD. mGluR4 orthosteric agonists have been tested in
neurotoxin-based rat models of PD, where they reduced signs
of inflammation and the consequent dopamine neuronal loss
(Battaglia et al., 2006; Zhou et al., 2006; Betts et al., 2012).
These effects were also observed using more potent, selective and
orally bioavailable mGlu4 receptor PAMs, such as ADX71743
(Le Poul et al., 2012). The increasing importance of the
potential use of mGlu4 receptor agonists in PD relies in
their capability to modulate directly neuronal circuits, and
as additive effects, to attenuate pro-inflammatory immune
mechanisms associated with PD. Accordingly, VU0155041, a
mGlu4 receptor PAM, reduces microglia activation in the
substantia nigra pars compacta of 6-OHDA-treated rats (Betts
et al., 2012).

CONCLUSION

Metabotropic glutamate receptors are highly and diffusely
expressed in glial cells. This, on one side, increases the options
for therapeutic interventions, but, on the other side, makes even
more difficult the possibility to target selectively single receptors
to yield neuroprotection. As mentioned above, different mGlu
receptors may give rise to contrasting outcomes when activated

in neurons or in glial cells or even in different types of glial cells
(see Figure 1).

mGlu5 receptor agonists for instance, might be detrimental for
neuroprotection. On neurons, mGlu5 receptor stimulation has
been linked to increased synaptotoxicity in AD and PD models
(Bruno et al., 2017). A similar potentiation of neurotoxicity
is also observed following activation of mGlu5 receptor in
astrocytes. Therefore, the anti-inflammatory effects mediated
by the activation of mGlu5 receptor on microglia may be
vanished by the effects that mGlu5 receptor agonists could exert
acting directly on neurons and/or on astrocytes. However, when
considering as a whole the different role of mGlu5 receptor in
astrocytes and microglia in neurodegenerative disorders, NAMs
of mGlu5 receptor should continue to represent a relevant
pharmacological tool to develop new neuroprotective strategies
in these diseases, with astrocytes as the main target (see Figure 1).

mGlu3 receptor represents a validated pharmacological
target to develop disease-modifying drugs in neurodegenerative
disorders such as AD, where the development of mGlu3 receptor
PAMs might be successful (Figure 1). These drugs acting on
receptors expressed in glial cells exert a relevant neuroprotective
activity in AD models through multiple mechanisms such
as the release of neurotrophic factors (TGF-β1, BDNF) and
the reduction of Aβ production (Bruno et al., 2017). More
specifically, drugs with mGlu2 NAM/mGlu3 PAM activities
might be considered excellent candidates for the treatment of
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AD. The potential disease-modifying activity of pure mGlu2/3
receptors agonists may be vanished by the detrimental effects of
mGlu2 receptor in neurons. Drugs endowed with mGlu2 NAM
activity may limit this effect and also cater the potential to restrain
microglia-induced neuroinflammation that is consistently found
in different neurodegenerative disorders such as AD and PD.

Finally, the effects mediated by mGlu4 receptor expressed
either in astrocytes, microglia and oligodendrocytes appear
promising for the development of mGlu4 receptor modulators
in the treatment of neurodegenerative disorders (Figure 1).
In this regard, the possibility to prevent neuroinflammatory
phenomena with mGlu4 PAMs seems particularly intriguing
since the effect exerted on glial cells may be synergized by the
modulatory activity shown by mGlu4 receptor agonists on the
peripheral immune system (Fallarino et al., 2010; Fazio et al.,
2014, 2018).

Moving from the evidence discussed in the present review,
we believe that targeting astrocytes and microglia with mGlu3

PAM or oligodendrocytes with mGlu4 PAMs might actually
represent a novel pharmacological approach for the treatment of
neurodegenerative disorders.
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