4,265 research outputs found
Optical pulse-shaping for internal cooling of molecules
We consider the use of pulse-shaped broadband femtosecond lasers to optically
cool rotational and vibrational degrees of freedom of molecules. Since this
approach relies on cooling rotational and vibrational quanta by exciting an
electronic transition, it is most easily applicable to molecules with similar
ground and excited potential energy surfaces, such that the vibrational state
is usually unchanged during electronic relaxation. Compared with schemes that
cool rotations by exciting vibrations, this approach achieves internal cooling
on the orders-of- magnitude faster electronic decay timescale and is
potentially applicable to apolar molecules. For AlH+, a candidate species, a
rate-equation simulation indicates that rovibrational equilibrium should be
achievable in 8 \mu s. In addition, we report laboratory demonstration of
optical pulse shaping with sufficient resolution and power for rotational
cooling of AlH+
Recognition-mediated hydrogel swelling controlled by interaction with a negative thermoresponsive LCST polymer
Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non-thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT4+, swelling occurred as a result of host–guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter-ions embedded in the network. The immersion of NaphtGel in a solution of poly(N-isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT4+ induced positive thermoresponsive behaviour. The LCST-induced dethreading of the polymer-based pseudorotaxane upon heating led to transfer of the CBPQT4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF-based host–guest complexes in solution and contraction of the hydrogel
On the inner Double-Resonance Raman scattering process in bilayer graphene
The dispersion of phonons and the electronic structure of graphene systems
can be obtained experimentally from the double-resonance (DR) Raman features by
varying the excitation laser energy. In a previous resonance Raman
investigation of graphene, the electronic structure was analyzed in the
framework of the Slonczewski-Weiss-McClure (SWM) model, considering the outer
DR process. In this work we analyze the data considering the inner DR process,
and obtain SWM parameters that are in better agreement with those obtained from
other experimental techniques. This result possibly shows that there is still a
fundamental open question concerning the double resonance process in graphene
systems.Comment: 5 pages, 3 figure
Higher Daily Air Temperature Is Associated with Shorter Leukocyte Telomere Length
[Image: see text] Higher air temperature is associated with increased age-related morbidity and mortality. To date, short-term effects of air temperature on leukocyte telomere length have not been investigated in an adult population. We aimed to examine the short-term associations between air temperature and leukocyte telomere length in an adult population-based setting, including two independent cohorts. This population-based study involved 5864 participants from the KORA F3 (2004–2005) and F4 (2006–2008) cohort studies conducted in Augsburg, Germany. Leukocyte telomere length was assessed by a quantitative PCR-based method. We estimated air temperature at each participant′s residential address through a highly resolved spatiotemporal model. We conducted cohort-specific generalized additive models to explore the short-term effects of air temperature on leukocyte telomere length at lags 0–1, 2–6, 0–6, and 0–13 days separately and pooled the estimates by fixed-effects meta-analysis. Our study found that between individuals, an interquartile range (IQR) increase in daily air temperature was associated with shorter leukocyte telomere length at lags 0–1, 2–6, 0–6, and 0–13 days (%change: −2.96 [−4.46; −1.43], −2.79 [−4.49; −1.07], −4.18 [−6.08; −2.25], and −6.69 [−9.04; −4.27], respectively). This meta-analysis of two cohort studies showed that between individuals, higher daily air temperature was associated with shorter leukocyte telomere length
Optical Trapping of an Ion
For several decades, ions have been trapped by radio frequency (RF) and
neutral particles by optical fields. We implement the experimental
proof-of-principle for trapping an ion in an optical dipole trap. While
loading, initialization and final detection are performed in a RF trap, in
between, this RF trap is completely disabled and substituted by the optical
trap. The measured lifetime of milliseconds allows for hundreds of oscillations
within the optical potential. It is mainly limited by heating due to photon
scattering. In future experiments the lifetime may be increased by further
detuning the laser and cooling the ion. We demonstrate the prerequisite to
merge both trapping techniques in hybrid setups to the point of trapping ions
and atoms in the same optical potential.Comment: 5 pages, 3 figure
A model of top-down gain control in the auditory system
To evaluate a model of top-down gain control in the auditory system, 6 participants were asked to identify 1-kHz pure tones differing only in intensity. There were three 20-session conditions: (1) four soft tones (25, 30, 35, and 40 dB SPL) in the set; (2) those four soft tones plus a 50-dB SPL tone; and (3) the four soft tones plus an 80-dB SPL tone. The results were well described by a top-down, nonlinear gain-control system in which the amplifier’s gain depended on the highest intensity in the stimulus set. Individual participants’ identification judgments were generally compatible with an equal-variance signal-detection model in which the mean locations of the distribution of effects along the decision axis were determined by the operation of this nonlinear amplification system
- …