895 research outputs found
A New Approach to Streaming Data from the Cloud
This is the final version.Available from American Meteorological Society via the DOI in this record.Environmental datasets are becoming so large that they are increasingly being hosted in the compute cloud, where they can be efficiently analyzed and disseminated. However, this necessitates new ways of efficiently delivering environmental information across the Internet to users. We visualised a big atmospheric dataset in a web page by repurposing techniques normally used to stream HD video. You can try the prototype at http://demo.3dvis.informaticslab.co.uk/ng-3d-vis/apps/desktop/ or watch a video demonstration at www.youtube.com/watch?v=pzvk1ZNMvFY
Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries
Suppose that an -simplex is partitioned into convex regions having
disjoint interiors and distinct labels, and we may learn the label of any point
by querying it. The learning objective is to know, for any point in the
simplex, a label that occurs within some distance from that point.
We present two algorithms for this task: Constant-Dimension Generalised Binary
Search (CD-GBS), which for constant uses queries, and Constant-Region Generalised Binary
Search (CR-GBS), which uses CD-GBS as a subroutine and for constant uses
queries.
We show via Kakutani's fixed-point theorem that these algorithms provide
bounds on the best-response query complexity of computing approximate
well-supported equilibria of bimatrix games in which one of the players has a
constant number of pure strategies. We also partially extend our results to
games with multiple players, establishing further query complexity bounds for
computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in
Theorem 6, adds footnotes with additional comments and fixes typo
Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier
The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8Ă105 gain, delivering pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500Ă from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons psâ1 nmâ1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3Ă10â9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems
Formal verification of CNL health recommendations
This research is partially supported by EPSRC grant EP/M014290/1.Clinical texts, such as therapy algorithms, are often described in natural language and may include hidden inconsistencies, gaps and potential deadlocks. In this paper, we propose an approach to identify such problems with formal verification. From each sentence in the therapy algorithm we automatically generate a parse tree and derive case frames. From the case frames we construct a state-based representation (in our case a timed automaton) and use a model checker (here UPPAAL) to verify the model. Throughout the paper we use an example of the algorithm for blood glucose lowering therapy in adults with type 2 diabetes to illustrate our approach.Postprin
Long term geological record of a global deep subsurface microbial habitat in sand injection complexes
Peer reviewedPublisher PD
The Viscoelastic Properties of Passive Eye Muscle in Primates. I: Static Forces and Step Responses
The viscoelastic properties of passive eye muscles are prime determinants of the deficits observed following eye muscle paralysis, the root cause of several types of strabismus. Our limited knowledge about such properties is hindering the ability of eye plant models to assist in formulating a patient's diagnosis and prognosis. To investigate these properties we conducted an extensive in vivo study of the mechanics of passive eye muscles in deeply anesthetized and paralyzed monkeys. We describe here the static length-tension relationship and the transient forces elicited by small step-like elongations. We found that the static force increases nonlinearly with length, as previously shown. As expected, an elongation step induces a fast rise in force, followed by a prolonged decay. The time course of the decay is however considerably more complex than previously thought, indicating the presence of several relaxation processes, with time constants ranging from 1 ms to at least 40 s. The mechanical properties of passive eye muscles are thus similar to those of many other biological passive tissues. Eye plant models, which for lack of data had to rely on (erroneous) assumptions, will have to be updated to incorporate these properties
On-demand semiconductor single-photon source with near-unity indistinguishability
Single photon sources based on semiconductor quantum dots offer distinct
advantages for quantum information, including a scalable solid-state platform,
ultrabrightness, and interconnectivity with matter qubits. A key prerequisite
for their use in optical quantum computing and solid-state networks is a high
level of efficiency and indistinguishability. Pulsed resonance fluorescence
(RF) has been anticipated as the optimum condition for the deterministic
generation of high-quality photons with vanishing effects of dephasing. Here,
we generate pulsed RF single photons on demand from a single,
microcavity-embedded quantum dot under s-shell excitation with 3-ps laser
pulses. The pi-pulse excited RF photons have less than 0.3% background
contributions and a vanishing two-photon emission probability.
Non-postselective Hong-Ou-Mandel interference between two successively emitted
photons is observed with a visibility of 0.97(2), comparable to trapped atoms
and ions. Two single photons are further used to implement a high-fidelity
quantum controlled-NOT gate.Comment: 11 pages, 11 figure
Perturbative quantum gravity with the Immirzi parameter
We study perturbative quantum gravity in the first-order tetrad formalism.
The lowest order action corresponds to Einstein-Cartan plus a parity-odd term,
and is known in the literature as the Holst action. The coupling constant of
the parity-odd term can be identified with the Immirzi parameter of loop
quantum gravity. We compute the quantum effective action in the one-loop
expansion. As in the metric second-order formulation, we find that in the case
of pure gravity the theory is on-shell finite, and the running of Newton's
constant and the Immirzi parameter is inessential. In the presence of fermions,
the situation changes in two fundamental aspects. First, non-renormalizable
logarithmic divergences appear, as usual. Second, the Immirzi parameter becomes
a priori observable, and we find that it is renormalized by a four-fermion
interaction generated by radiative corrections. We compute its beta function
and discuss possible implications. The sign of the beta function depends on
whether the Immirzi parameter is larger or smaller than one in absolute value,
and the values plus or minus one are UV fixed-points (we work in Euclidean
signature). Finally, we find that the Holst action is stable with respect to
radiative corrections in the case of minimal coupling, up to higher order
non-renormalizable interactions.Comment: v2 minor amendment
Micro-manufacturing : research, technology outcomes and development issues
Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
- âŠ