1,288 research outputs found

    Group Analysis of the Novikov Equation

    Full text link
    We find the Lie point symmetries of the Novikov equation and demonstrate that it is strictly self-adjoint. Using the self-adjointness and the recent technique for constructing conserved vectors associated with symmetries of differential equations, we find the conservation law corresponding to the dilations symmetry and show that other symmetries do not provide nontrivial conservation laws. Then we investigat the invariant solutions

    Approximating Weighted Duo-Preservation in Comparative Genomics

    Full text link
    Motivated by comparative genomics, Chen et al. [9] introduced the Maximum Duo-preservation String Mapping (MDSM) problem in which we are given two strings s1s_1 and s2s_2 from the same alphabet and the goal is to find a mapping π\pi between them so as to maximize the number of duos preserved. A duo is any two consecutive characters in a string and it is preserved in the mapping if its two consecutive characters in s1s_1 are mapped to same two consecutive characters in s2s_2. The MDSM problem is known to be NP-hard and there are approximation algorithms for this problem [3, 5, 13], but all of them consider only the "unweighted" version of the problem in the sense that a duo from s1s_1 is preserved by mapping to any same duo in s2s_2 regardless of their positions in the respective strings. However, it is well-desired in comparative genomics to find mappings that consider preserving duos that are "closer" to each other under some distance measure [19]. In this paper, we introduce a generalized version of the problem, called the Maximum-Weight Duo-preservation String Mapping (MWDSM) problem that captures both duos-preservation and duos-distance measures in the sense that mapping a duo from s1s_1 to each preserved duo in s2s_2 has a weight, indicating the "closeness" of the two duos. The objective of the MWDSM problem is to find a mapping so as to maximize the total weight of preserved duos. In this paper, we give a polynomial-time 6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and Combinatorics Conference (COCOON 2017

    Protective effect of wild Corni fructus methanolic extract against acute alcoholic liver injury in mice

    Get PDF
    Background: In Chinese folk medicine, Corni fructus (C. fructus) has traditionally been used to improve liver function, although the mechanism underlying its activity remains unclear. The aim of the present study was to evaluate the protective effects of wild C. fructus methanolic extract against acute alcoholic liver injury.Methods: Alcohol was administered to mice for three consecutive days, either alone or in combination with C. fructus methanolic extract (50, 100, or 200mg/kg body weight/d). Serum and liver tissue were collected from the animals and subjected to biochemical and histopathological analyses.Results:C. fructus significantly alleviated alcohol-induced liver injury by reducing serum alanine aminotransferase, aspartate aminotransferase, and thiobarbituric acid reactive species, inhibiting hydroxyl radicals (center dot OH), and increasing total superoxide dismutase, glutathione peroxidase, and glutathione in the liver (P<0.05). In addition, the C. fructus treatment inhibited the expression and activity of cytochrome P450 2E1 (P<0.05)Conclusions:C. fructus could be a promising natural substance for ameliorating acute alcohol-induced oxidative stress and hepatic injury.- This work was supported by the Construction Project of Shaanxi Collaborative Innovation Center (2015, Shaanxi Sci-tech University); High-End Foreign Experts Recruitment Program [Grant GDW20146100228]; and Key Construction Program of International Cooperation Base in S&T Shaanxi Province, China [Grant 2015SD0018].info:eu-repo/semantics/publishedVersio

    Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    Get PDF
    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac

    Cracking in asphalt materials

    Get PDF
    This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft

    From cellular attractor selection to adaptive signal control for traffic networks

    Get PDF
    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains

    Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma

    Get PDF
    Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis

    Augmented Cardiac Hypertrophy in Response to Pressure Overload in Mice Lacking ELTD1

    Get PDF
    BACKGROUND: Epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) is developmentally upregulated in the heart. Little is known about the relationship between ELTD1 and cardiac diseases. Therefore, we aimed to clarify the role of ELTD1 in pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS: C57BL/6J wild-type (WT) mice and ELTD1-knockout (KO) mice were subjected to left ventricular pressure overload by descending aortic banding (AB). KO mice exhibited more unfavorable cardiac remodeling than WT mice 28 days post AB; this remodeling was characterized by aggravated cardiomyocyte hypertrophy, thickening of the ventricular walls, dilated chambers, increased fibrosis, and blunted systolic and diastolic cardiac function. Analysis of signaling pathways revealed enhanced extracellular signal-regulated kinase (ERK) and the c-Jun amino-terminal kinase (JNK) phosphorylation in response to ELTD1 deletion. CONCLUSIONS: ELTD1 deficiency exacerbates cardiac hypertrophy and cardiac function induced by AB-induced pressure overload by promoting both cardiomyocyte hypertrophy and cardiac fibrosis. These effects are suggested to originate from the activation of the ERK and JNK pathways, suggesting that ELTD1 is a potential target for therapies that prevent the development of cardiac disease
    • …
    corecore