46,424 research outputs found

    Non-gaussian Noise in Quantum Spin Glasses and Interacting Two-level Systems

    Full text link
    We study a general model for non-gaussian 1/f1/f noise based on an infinite range quantum Ising spin system in the paramagnetic state, or equivalently, interacting two-level classical fluctuators. We identify a dilatation interaction term in the dynamics which survives the thermodynamic limit and circumvents the central limit theorem to produce non-gaussian noise even when the equilibrium distribution is that of {\em non-interacting} spins. The resulting second spectrum (`noise of the noise') itself has a universal 1/f1/f form which we analyze within a dynamical mean field approximation.Comment: 4 pages, 3 figure

    Integrating Fisheries Into Irrigation Planning and Management

    Get PDF

    Non-linear generation of acoustic noise in the IAR spacecraft

    Get PDF
    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests

    Jet Fragmentation in Vacuum and Medium with gamma-hadron Correlations in PHENIX

    Full text link
    Jet fragmentation in p+p and Au+Au collisions is studied via back-to-back correlations of direct photons and charged hadrons. The direct photon correlations are obtained by statical subtraction of the background from decay photons. Results on the nuclear modification to the associated charged hadron yields are reviewed. Further studies of jet fragmentation in p+p using isolated direct photons are also presented. A kT-smeared LO pQCD calculation is used to interpret the data. The sensitivity of the data to the underlying fragmentation function is tested and the results are found to be compatible with expectations of a sample dominated by quark jet fragmentation.Comment: Talk presented at Hot Quarks 2010, June 21-26, La Londe Les Maures, France. To be published in Journal of Physics: Conference Series (JPCS

    Pilot Human Factors in Stall/Spin Accidents of Supersonic Fighter Aircraft

    Get PDF
    A study has been made of pilot human factors related to stall/spin accidents of supersonic fighter aircraft. The military specifications for flight at high angles of attack are examined. Several pilot human factors problems related to stall/spin are discussed. These problems include (1) unsatisfactory nonvisual warning cues; (2) the inability of the pilot to quickly determine if the aircraft is spinning out of control, or to recognize the type of spin; (3) the inability of the pilot to decide on and implement the correct spin recovery technique; (4) the inability of the pilot to move, caused by high angular rotation; and (5) the tendency of pilots to wait too long in deciding to abandon the irrecoverable aircraft. Psycho-physiological phenomena influencing pilot's behavior in stall/spin situations include (1) channelization of sensory inputs, (2) limitations in precisely controlling several muscular inputs, (3) inaccurate judgment of elapsed time, and (4) disorientation of vestibulo-ocular inputs. Results are given of pilot responses to all these problems in the F14A, F16/AB, and F/A-18A aircraft. The use of departure spin resistance and automatic spin prevention systems incorporated on recent supersonic fighters are discussed. These systems should help to improve the stall/spin accident record with some compromise in maneuverability

    New insights on the dense molecular gas in NGC253 as traced by HCN and HCO+

    Full text link
    We have imaged the central ~1kpc of the circumnuclear starburst disk in the galaxy NGC253 in the HCN(1-0), HCO+(1-0), and CO(1-0) transitions at 60pc resolution using the Owens Valley Radio Observatory Millimeter-Wavelength Array (OVRO). We have also obtained Atacama Pathfinder Experiment (APEX) observations of the HCN(4-3) and the HCO+(4-3) lines of the starburst disk. We find that the emission from the HCN(1-0) and HCO+(1-0) transitions, both indicators of dense molecular gas, trace regions which are non-distinguishable within the uncertainties of our observations. Even though the continuum flux varies by more than a factor 10 across the starburst disk, the HCN/HCO+ ratio is constant throughout the disk, and we derive an average ratio of 1.1+/-0.2. From an excitation analysis we find that all lines from both molecules are subthermally excited and that they are optically thick. This subthermal excitation implies that the observed HCN/HCO+ line ratio is sensitive to the underlying chemistry. The constant line ratio thus implies that there are no strong abundance gradients across the starburst disk of NGC253. This finding may also explain the variations in L'(HCN)/L'(HCO+) between different star forming galaxies both nearby and at high redshifts.Comment: 9 pages, 12 figures, ApJ in press (volume 666 September
    corecore