11,882 research outputs found

    A data storage, retrieval and analysis system for endocrine research

    Get PDF
    This retrieval system builds, updates, retrieves, and performs basic statistical analyses on blood, urine, and diet parameters for the M071 and M073 Skylab and Apollo experiments. This system permits data entry from cards to build an indexed sequential file. Programs are easily modified for specialized analyses

    Pseudo-potential treatment of two aligned dipoles under external harmonic confinement

    Get PDF
    Dipolar Bose and Fermi gases, which are currently being studied extensively experimentally and theoretically, interact through anisotropic, long-range potentials. Here, we replace the long-range potential by a zero-range pseudo-potential that simplifies the theoretical treatment of two dipolar particles in a harmonic trap. Our zero-range pseudo-potential description reproduces the energy spectrum of two dipoles interacting through a shape-dependent potential under external confinement very well, provided that sufficiently many partial waves are included, and readily leads to a classification scheme of the energy spectrum in terms of approximate angular momentum quantum numbers. The results may be directly relevant to the physics of dipolar gases loaded into optical lattices.Comment: 9 pages, 4 figure

    Scattering of charge carriers by point defects in bilayer graphene

    Get PDF
    Theory of scattering of massive chiral fermions in bilayer graphene by radial symmetric potential is developed. It is shown that in the case when the electron wavelength is much larger than the radius of the potential the scattering cross-section is proportional to the electron wavelength. This leads to the mobility independent on the electron concentration. In contrast with the case of single-layer, neutral and charged defects are, in general, equally relevant for the resistivity of the bilayer graphene.Comment: final versio

    Two-dimensional scattering and bound states of polar molecules in bilayers

    Full text link
    Low-energy two-dimensional scattering is particularly sensitive to the existence and properties of weakly-bound states. We show that interaction potentials V(r)V(r) with vanishing zero-momentum Born approximation ∫d2rV(r)=0\int d^2r V(r)=0 lead to an anomalously weak bound state which crucially modifies the two-dimensional scattering properties. This anomalous case is especially relevant in the context of polar molecules in bilayer arrangements.Comment: 4 pages, 3 figure

    Connection between effective-range expansion and nuclear vertex constant or asymptotic normalization coefficient

    Full text link
    Explicit relations between the effective-range expansion and the nuclear vertex constant or asymptotic normalization coefficient (ANC) for the virtual decay B→A+aB\to A+a are derived for an arbitrary orbital momentum together with the corresponding location condition for the (A+aA+a) bound-state energy. They are valid both for the charged case and for the neutral case. Combining these relations with the standard effective-range function up to order six makes it possible to reduce to two the number of free effective-range parameters if an ANC value is known from experiment. Values for the scattering length, effective range, and form parameter are determined in this way for the 16^{16}O+pp, α+t\alpha+t and α+3\alpha+^3He collisions in partial waves where a bound state exists by using available ANCs deduced from experiments. The resulting effective-range expansions for these collisions are valid up to energies larger 5 MeV.Comment: 17 pages, 6 figure

    The Response to a Perturbation in the Reflection Amplitude

    Full text link
    We apply inverse scattering theory to calculate the functional derivative of the potential V(x)V(x) and wave function ψ(x,k)\psi(x,k) of a one-dimensional Schr\"odinger operator with respect to the reflection amplitude r(k)r(k).Comment: 16 pages, no figure

    Three body problem in a dilute Bose-Einstein condensate

    Get PDF
    We derive the explicit three body contact potential for a dilute condensed Bose gas from microscopic theory. The three body coupling constant exhibits the general form predicted by T.T. Wu [Phys. Rev. 113, 1390 (1959)] and is determined in terms of the amplitudes of two and three body collisions in vacuum. In the present form the coupling constant becomes accessible to quantitative studies which should provide the crucial link between few body collisions and the stability of condensates with attractive two body forces

    Nitrification-denitrification in WSP: a mechanism for permanent nitrogen removal in maturation ponds

    Get PDF
    A pilot-scale primary maturation pond was spiked with 15N-labelled ammonia (15NH4Cl) and 15N labelled nitrite (Na15NO2), in order to improve current understanding of the dynamics of inorganic nitrogen transformations and removal in WSP systems. Stable isotope analysis of δ15N showed that nitrification could be considered as an intermediate step in WSP, which is masked by simultaneous denitrification, under conditions of low algal activity. Molecular microbiology analysis showed that denitrification can be considered a feasible mechanism for permanent nitrogen removal in WSP, which may be supported either by ammonia-oxidising bacteria (AOB) or by methanotrophs, in addition to nitrite-oxidising bacteria (NOB). However, the relative supremacy of the denitrification process over other nitrogen removal mechanisms (e.g., biological uptake) depends upon phytoplanktonic activity

    The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer

    Get PDF
    Low muscle mass in individuals with cancer has a profound impact on quality of life and independence and is associated with greater treatment toxicity and poorer prognosis. Exercise interventions are regularly being investigated as a means to ameliorate treatment-related adverse effects, and nutritional/supplementation strategies to augment adaptations to exercise are highly valuable. Creatine (Cr) is a naturally-occurring substance in the human body that plays a critical role in energy provision during muscle contraction. Given the beneficial effects of Cr supplementation on lean body mass, strength, and physical function in a variety of clinical populations, there is therapeutic potential in individuals with cancer at heightened risk for muscle loss. Here, we provide an overview of Cr physiology, summarize the evidence on the use of Cr supplementation in various aging/clinical populations, explore mechanisms of action, and provide perspectives on the potential therapeutic role of Cr in the exercise oncology setting

    Generalized Mean Field Approach to a Resonant Bose-Fermi Mixture

    Full text link
    We formulate a generalized mean-field theory of a mixture of fermionic and bosonic atoms, in which the fermion-boson interaction can be controlled by a Feshbach resonance. The theory correctly accounts for molecular binding energies of the molecules in the two-body limit, in contrast to the most straightforward mean-field theory. Using this theory, we discuss the equilibrium properties of fermionic molecules created from atom pairs in the gas. We also address the formation of molecules when the magnetic field is ramped across the resonance, and present a simple Landau-Zener result for this process.Comment: 35 page
    • …
    corecore