2,584 research outputs found

    First Results from SPARO: Evidence for Large-Scale Toroidal Magnetic Fields in the Galactic Center

    Full text link
    We have observed the linear polarization of 450 micron continuum emission from the Galactic center, using a new polarimetric detector system that is operated on a 2 m telescope at the South Pole. The resulting polarization map extends ~ 170 pc along the Galactic plane and ~ 30 pc in Galactic latitude, and thus covers a significant fraction of the central molecular zone. Our map shows that this region is permeated by large-scale toroidal magnetic fields. We consider our results together with radio observations that show evidence for poloidal fields in the Galactic center, and with Faraday rotation observations. We compare all of these observations with the predictions of a magnetodynamic model for the Galactic center that was proposed in order to explain the Galactic Center Radio Lobe as a magnetically driven gas outflow. We conclude that the observations are basically consistent with the model.Comment: 11 pages, 2 figures, 1 table, submitted to ApJ Let

    The Heider balance - a continuous approach

    Full text link
    The Heider balance (HB) is investigated in a fully connected graph of NN nodes. The links are described by a real symmetric array r(i,j), i,j=1,...,N. In a social group, nodes represent group members and links represent relations between them, positive (friendly) or negative (hostile). At the balanced state, r(i,j)r(j,k)r(k,i)>0 for all the triads (i,j,k). As follows from the structure theorem of Cartwright and Harary, at this state the group is divided into two subgroups, with friendly internal relations and hostile relations between the subgroups. Here the system dynamics is proposed to be determined by a set of differential equations. The form of equations guarantees that once HB is reached, it persists. Also, for N=3 the dynamics reproduces properly the tendency of the system to the balanced state. The equations are solved numerically. Initially, r(i,j) are random numbers distributed around zero with a symmetric uniform distribution of unit width. Calculations up to N=500 show that HB is always reached. Time to get the balanced state varies with the system size N as N^{-1/2}. The spectrum of relations, initially narrow, gets very wide near HB. This means that the relations are strongly polarized. In our calculations, the relations are limited to a given range around zero. With this limitation, our results can be helpful in an interpretation of somestatistical data.Comment: 9 pages, 4 figures. Int. J. Mod. Phys. C (2005), in prin

    Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus).

    Get PDF
    In widespread and genetically structured populations, temperature variation may lead to among-population differentiation of thermal biology. The New Zealand stick insect genus Micrarchus contains four species that inhabit different thermal environments, two of which are geographically widespread. RNA-Seq and quantitative PCR were used to investigate the transcriptional responses to cold shock among lowland and alpine species to identify cold-responsive transcripts that differ between the species and to determine whether there is intraspecific geographical variation in gene expression. We also used mitochondrial DNA, nuclear 28S ribosomal DNA and transcriptome-wide SNPs to determine phylogeographic structure and the potential for differences in genetic backgrounds to contribute to variation in gene expression. RNA-Seq identified 2160 unigenes that were differentially expressed as a result of low-temperature exposure across three populations from two species (M. hystriculeus and M. nov. sp. 2), with a majority (68% ± 20%) being population specific. This extensive geographical variation is consistent across years and is likely a result of background genetic differences among populations caused by genetic drift and possibly local adaptation. Responses to cold shock shared among alpine M. nov. sp. 2 populations included the enrichment of cuticular structure-associated transcripts, suggesting that cuticle modification may have accompanied colonization of low-temperature alpine environments and the development of a more cold-hardy phenotype

    Growth and characterization of anodic Films on InP in KOH and (NH4)2S

    Get PDF
    The current-voltage characteristics of InP were investigated in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to the growth of passivating films. The relationship between the peak currents and the scan rates suggests that the film formation process is diffusion controlled in both cases. The film thickness required to inhibit current flow was found to be much lower on samples anodized in the sulphide solution. Focused ion beam (FIB) secondary electron images of the surface films show that film cracking of the type reported previously for films grown in (NH4)2S is also observed for films grown in KOH. X-ray and electron diffraction measurements indicate the presence of In2O3 and InPO4 in films grown in KOH and In2S3 in films grown in (NH4)2S

    Comparison of oscillatory behavior on InP electrodes in KOH solutions

    Get PDF
    The observation of current oscillations under potential sweep conditions when an n-InP electrode is anodized in a KOH electrolyte is reported and compared to the oscillatory behavior noted during anodization in an (NH4)2S electrolyte. In both cases oscillations are observed above 1.7 V (SCE). The charge per cycle was found to increase linearly with potential for the InP/KOH system but was observed to be independent of potential for the InP/(NH4)2S system. The period of the oscillations in the InP/KOH was found to increase with applied potential. In this case the oscillations are asymmetrical and the rising and falling segments have a different dependence on potential. Although the exact mechanism is not yet know for either system, transmission electron microscopy studies show that in both cases, the electrode is covered by a thick porous film in the oscillatory region

    Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq.

    Get PDF
    The endemic New Zealand alpine stick insect Micrarchus nov. sp. 2 regularly experiences sub-zero temperatures in the wild. 454-based RNA-Seq was used to generate a de novo transcriptome and differentiate between treatments to investigate the genetic basis of cold tolerance. Non cold-treated individuals were compared to those exposed to 0°C for 1 h followed by a 1 h recovery period at 20°C. We aligned 607,410 Roche 454 reads, generating a transcriptome of 5235 contigs. Differential expression analysis ranked candidate cold responsive genes for qPCR validation by P-value. The top nine up-regulated candidates, together with eight a priori targets identified from previous studies, had their relative expression quantified using qPCR. Three candidate cold responsive genes from the RNA-Seq data were verified as significantly up-regulated, annotated as: prolyl 4-hydroxylase subunit alpha-1 (P4HA1), staphylococcal nuclease domain-containing protein 1 (snd1) and cuticular protein analogous to peritrophins 3-D2 (Cpap3-d2). All three are novel candidate genes, illustrating the varied response to low temperature across insects

    Anisotropy in the Cosmic Microwave Background at Degree Angular Scales: Python V Results

    Get PDF
    Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 deg x 1.02 deg beam the instrument fully sampled 598 deg^2 of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in eight multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales. The shape of the observed power spectrum is not a simple linear rise but has a sharply increasing slope starting at l ~ 150.Comment: 5 page

    Anodic oxidation of InP in KOH electrolytes

    Get PDF
    The anodic behavior of InP in 1 mol dm-3 KOH was investigated and compared with its behavior at higher concentrations of KOH. At concentrations of 2 mol dm-3 KOH or greater, selective etching of InP occurs leading to thick porous InP layers near the surface of the sustrate. In contrast, in 1 mol dm-3 KOH, no such porous layers are formed but a thin surface film is formed at potentials in the range 0.6 V to 1.3 V. The thickness of this film was determined by spectroscopic ellipsometry as a function of the upper potential and the measured film thickness corresponds to the charge passed up to a potential of 1.0 V. Anodization to potentials above 1.5 V in 1 mol dm- 3 KOH results in the growth of thick, porous oxide films (~ 1.2 ”m). These films are observed to crack, ex-situ, due to shrinkage after drying in ambient air. Comparisons between the charge density and film thickness measurements indicate a porosity of approximately 77% for such films

    Electrochemical pore formation on InP in alkaline solutions

    Get PDF
    The surface properties of InP electrodes were examined following anodization in (NH4)2S and KOH electrolytes. In both solutions, the observation of current peaks in the cyclic voltammetric curves was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution, revealed surface pitting and TEM micrographs revealed the porous nature of the film formed on top of the pitted substrate. After anodization in the KOH electrolyte, TEM images revealed that a porous layer extending 500 nm into the substrate had been formed. Analysis of the composition of the anodic products indicates the presence of In2S3 in films grown in (NH4)2S and an In2O3 phase within the porous network formed in KOH
    • 

    corecore