7,661 research outputs found

    A 3-form Gauge Potential in 5D in connection with a Possible Dark Sector of 4D-Electrodynamics

    Get PDF
    We here propose a 5-dimensional {\bf Abelian gauge} model based on the mixing between a U(1)U(1) potential and an Abelian 3-form field by means of a topological mass term. An extended covariant derivative is introduced to minimally couple a Dirac field to the U(1)U(1) potential, while this same covariant derivative non-minimally couples the 3-form field to the charged fermion. A number of properties are discussed in 5D; in particular, the appearance of a topological fermionic current. A 4-dimensional reduced version of the model is investigated and, { \bf in addition to the U(1)U(1) electric- and magnetic-sort of fields,} there emerges an extra set of electric- and magnetic-like fields which contribute a negative pressure and may be identified as a possible fraction of dark energy. The role of the topological fermionic current is also contemplated upon dimensional reduction from 5D to 4D. Other issues we present in 4 space-time dimensions are the emergence {\bf of a pseudo-scalar massive particle,} an extra massive neutral gauge boson,{\bf which we interpret as a kind of paraphoton}, and the calculation of spin- and velocity-dependent interparticle potentials associated to the exchange of the intermediate bosonic fields of the model.Comment: -- 30 pages -- L. P. R. Ospedal appears as a new co-author; modifications by inclusion of the gravitational sector and the attainment of a spin- and velocity-dependent potential as an application have been worked out in this Revised Versio

    Probabilistic maintenance and optimization strategies for deteriorating civil infrastructures

    Get PDF
    In developed countries, civil infrastructures are one of the most significant investments of governments, corporations, and individuals. Among these, transportation infrastructures, including highways, bridges, airports, and ports, are of huge importance, both economical and social. Most developed countries have built a fairly complete network of highways to fit their needs. As a result, the required investment in building new highways has diminished during the last decade, and should be further reduced in the following years. On the other hand, significant structural deteriorations have been detected in transportation networks, and a huge investment is necessary to keep these infrastructures safe and serviceable. Due to the significant importance of bridges in the serviceability of highway networks, maintenance of these structures plays a major role. In this paper, recent progress in probabilistic maintenance and optimization strategies for deteriorating civil infrastructures with emphasis on bridges is summarized. A novel model including interaction between structural safety analysis,through the safety index, and visual inspections and non destructive tests, through the condition index, is presented. Single objective optimization techniques leading to maintenance strategies associated with minimum expected cumulative cost and acceptable levels of condition and safety are presented. Furthermore, multi-objective optimization is used to simultaneously consider several performance indicators such as safety, condition, and cumulative cost. Realistic examples of the application of some of these techniques and strategies are also presented.The authors gratefully acknowledge the partial financial support of the U.K. Highways Agency and of the U.S. National Science Foundation through grants CMS-9912525 and CMS-0217290. The second author also acknowledges the support of the Portuguese Science Foundation (FCT)

    Past and future blurring at fundamental length scale

    Full text link
    We obtain the κ\kappa-deformed versions of the retarded and advanced Green functions and show that their causality properties are blurred in a time interval of the order of a length parameter q=1/(2κ)q=1/(2\kappa). The functions also indicate a smearing of the light cone. These results favor the interpretation of qq as a fundamental length scale below which the concept of a point in spacetime should be substituted by the concept of a fuzzy region of radius qq, as proposed long ago by Heisenberg.Comment: Essentially, this is the version published in the Phys. Rev. Lett. 105, 211601 (2010). It has 4 pages and contains 2 figure

    MODELLING OF HYDRODYNAMICS AROUND AN IMPERMEABLE BREAKWATER: COMPARISON BETWEEN PHYSICAL AND SPH NUMERICAL MODELING

    Get PDF
    This work presents the new developments and the validation of a Smoothed Particle Hydrodynamics (SPH) numerical model used in the National Laboratory of Civil Engineering (Laboratório Nacional de Engenharia Civil - LNEC) for studies in coastal engineering processes. Although the model requires a high CPU time, it proved to be very promising in the simulation of complex flows, such as the wave-structure interaction and the wave breaking phenomenon. For the SPH model validation, physical modeling tests were performed in one LNEC’s flume to study the interaction between an impermeable structure and an incident regular wave. The comparison between numerical and experimental results, i.e. free surface elevation, overtopping volume and pressure, shows the good accuracy of the SPH model to reproduce the various phenomena involving on the wave propagation and interaction with the structure, namely the wave breaking, the wave overtopping and the pressure field on the structure

    Ordenha higiênica de leite de cabra.

    Get PDF
    Passos para ordenha higiênica; Limpeza da sala de ordenha e dos vasilhames.bitstream/item/132809/1/ID-38686.pd

    Interference and complementarity for two-photon hybrid entangled states

    Full text link
    In this work we generate two-photon hybrid entangled states (HES), where the polarization of one photon is entangled with the transverse spatial degree of freedom of the second photon. The photon pair is created by parametric down-conversion in a polarization-entangled state. A birefringent double-slit couples the polarization and spatial degrees of freedom of these photons and finally, suitable spatial and polarization projections generate the HES. We investigate some interesting aspects of the two-photon hybrid interference, and present this study in the context of the complementarity relation that exists between the visibilities of the one- and two-photon interference patterns.Comment: 10 pages, 4 figures. Accepted in Physical Review

    Metastability in the BCS model

    Full text link
    We discuss metastable states in the mean-field version of the strong coupling BCS-model and study the evolution of a superconducting equilibrium state subjected to a dynamical semi-group with Lindblad generator in detailed balance w.r.t. another equilibrium state. The intermediate states are explicitly constructed and their stability properties are derived. The notion of metastability in this genuine quantum system, is expressed by means of energy-entropy balance inequalities and canonical coordinates of observables
    corecore