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Abstract We here propose a 5-dimensional Abelian gauge
model based on the mixing between a U (1) potential and
an Abelian 3-form field by means of a topological mass
term. An extended covariant derivative is introduced to min-
imally couple a Dirac field to the U (1) potential, while this
same covariant derivative non-minimally couples the 3-form
field to the charged fermion. A number of properties are dis-
cussed in 5D; in particular, the appearance of a topological
fermionic current. A 4-dimensional reduced version of the
model is investigated and, in addition to the U (1) electric-
and magnetic-sort of fields, there emerges an extra set of
electric- and magnetic-like fields which contribute a nega-
tive pressure and may be identified as a possible fraction of
dark energy. The role of the topological fermionic current
is also contemplated upon dimensional reduction from 5D
to 4D. Other issues we present in 4 space-time dimensions
are the emergence of a pseudo-scalar massive particle, an
extra massive neutral gauge boson, which we interpret as a
kind of paraphoton, and the calculation of spin- and velocity-
dependent interparticle potentials associated to the exchange
of the intermediate bosonic fields of the model.

1 Introduction

The possibility of a multidimensional Universe has raised a
growing interest over the past decades. Currently, the rea-
sons for this interest come primarily from approaches such
as superstring theory, which is able to incorporate quantum
gravity in a natural and consistent way [1].

As a consequence of the superstring landscape, it is nowa-
days widely accepted that the structure of space-time must
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be described as the product of a 5-dimensional anti-de Sitter
space by a 5-dimensional hypersphere. Thus, we adopt the
viewpoint that the fundamental physics may be derived from
5 space-time and 5 compact internal dimensions.

In addition, the possibility of an equivalence between a
classical gravity theory, defined in a 5-dimensional (space-
time) bulk, and a quantum gauge theory (Yang–Mills) on the
corresponding 4-dimensional boundary was first proposed
by Maldacena in 1997 [2]. Important aspects of the gravity–
gauge correspondence were elaborated in articles by Gubser
et al., and by Witten [3–5].

We shall not, however, adopt the Ad S5/C FT4 equiva-
lence in its full sense. What we borrow from this corre-
spondence is simply the point of view that our fundamen-
tal physics takes place in 5 space-time dimensions; whether
this physics should be specifically analyzed in an Ad S5 or a
5D Minkowski scenario will actually depend on the partic-
ular phenomenon under study. Here, we shall assume that,
so long as the energy scale for electromagnetic interactions
is considered, we do not need to consider the presence of a
cosmological constant in the 5-dimensional world. For the
investigation we aim to pursue, our starting point is indeed a
5-dimensional Minkowski space-time.

Actually, in the present study, we explore the conse-
quences of an extra dimension [6], by just considering
Minkowski space as the background space-time, because the
effect of the curvature of the anti-de Sitter space (induced
by a cosmological constant, which for the LAMBDA-CDM
model is taken to be 10−47 GeV4 [7]) yields negligible cor-
rections as compared to the scale of masses and lengths typ-
ical of QED processes [8]. By neglecting the cosmological
constant, the isometry group of Ad S5 (namely, SO(2, 4))
reduces to the Poincaré group in 5 dimensions. So, we shall
here consider a model for electromagnetic interactions in
a 5-dimensional Minkowski space and our 4-dimensional
physics must emerge as the result of a specific dimensional
reduction scheme rather than by holographic projection.
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It is noteworthy that, if we were considering the quantum
effects of gravitation, the cosmological constant should not
be neglected, for it is well known that the latter induces the
production of gravitons with mass of the order of the Planck
mass [9,10]. However, in the particular case we are concerned
to study, massive gravitons do not couple to the associated
fluctuations of the electron and photon due to the fact that
they are highly massive, so that, in the energy regime of
the validity of the QED processes, those gravitons with so
a huge mass (induced by the cosmological constant) are not
excited.

From this perspective, in this paper, we start off from a
model based on the association of a 3-form gauge poten-
tial with accelerated expansion of the Universe [11]. The
introduction of the concept of dark energy is actually one
of the main approaches to account for the phenomenon of
a Universe in accelerated expansion [12]. Our particular
model, formulated in 5 space-time dimensions, as already
anticipated above, also yields, upon a dimensional reduc-
tion mechanism, the appearance of an extra neutral mas-
sive boson in 4-dimensional Minkowski space [13–15]. This
shall be presented in detail in the sequel. We are actually
interested in a gauge-invariant mass term which plays the
role of a mixed Chern–Simons topological mass, as it may
provide a scenario in 4 space-time dimensions where an
axionic particle and a sort of paraphoton emerge together.
The pseudo-scalar (axion) and the pseudo-vector are uni-
fied in the 5-dimensional world through a topological mass
term.

In connection with the study of the 3-form potential
[11,16–31], the mass of the photon is included in order to seek
a situation that is as broad as possible, i.e., capable of explor-
ing all the possibilities that a 3-form may offer. According
to the work by Koivisto and Nunes [11], 3-forms are used
to describe the dark energy fraction of our presently expand-
ing Universe. We should, however, point out that the 3-form
potential was initially studied by these authors through a
kinetic term (minimally coupled to Einstein gravity) added
up to a potential term [28]. Subsequently, the 3-form was
reassessed to include coupling to point particles [30]. Here,
we intend to investigate the 3-form in association with an
Abelian gauge vector, in a 5D scenario, by introducing a
topological (mixed) Chern–Simons-like mass term.

On the other hand, in a recent paper [32], the authors
show how a vortex gauge field, whenever coupled to charged
fermions, induce, by radiative corrections, a gauge-invariant
mass term for the photon. Rather than as a dynamical effect,
like in the paper [32], in our work, this mass term arises from
a dimensional reduction from the 5D model where there is
a topological mass term, as it is going to be shown in the
subsequent sections.

Five-dimensional Chern–Simons theory in its Abelian
version has recently been studied by Qi, Witten and Zhang

(QWZ) in the context of the physics of topological supercon-
ductors [33]. We also take this remarkable contribution—in
addition to the Ad S5/C FT4 correspondence—as a motiva-
tion for our exploitations in a 5-dimensional space-time. As is
well known, in superconductivity, a massive photon must be
present to accommodate the Meissner effect, responsible for
the expulsion of the magnetic field from inside materials in
their superconducting phase. Thus, with the physics of topo-
logical superconductors being processed in 5 dimensions,
according to the QWZ scenario, the photon could acquire
mass through a mechanism of topological mass generation,
as we are going to present here.

In summary, we intend to explore an electrodynamic
model that uses both a 3-form and a 1-form gauge potentials
in a mixed way in order to generate a massive gauge boson in
a 5-dimensional scenario. Upon dimensional reduction [34],
we actually attain a model that presents in its spectrum a
massive neutral vector boson degenerate (i.e., with the same
mass) with a neutral scalar excitation, the latter produced
by the mixing between a genuine pseudo-scalar field and a
longitudinal vector field. Our work follows the outline below.

In Sect. 2, we present the model we adopt to pursue our
investigation. We split it in two subsections, in which we
obtain the equation fields, discuss the conservation laws and
carry out the dimensional reduction of the model to 4D. Next,
in Sect. 3, we add up U (1)-charged fermions to the action of
the model in 5D discussed in the previous section. We obtain
the fermionic conserved currents in 5D and connect them
to the pseudo-tensor current of the paper [32]. Coupling the
model to gravity in 5D is also carried out. The 5-dimensional
action is then reduced to 4D, and we calculate the propagators
of the bosonic sector to read off the spectrum of excitations.
As an application, interparticle potentials generated by the
intermediation of the bosonic fields exchanged by external
currents are worked out. Finally, our Concluding Comments
are cast in Sect. 4.

2 Description of the model

Taking for granted the importance of understanding physics
in our 4-dimensional world from a more fundamental 5-
dimensional physics, we focus here on a study of a specific
electrodynamic model in 5 dimensions aiming at the possible
consequences it yields in a 4-dimensional space-time.

Thus, in this section, we present the model which consists
of a Lagrangian density containing the kinetic terms for each
gauge field (Aμ̄, and Cμ̄ν̄κ̄ ), and a mixing term between them.
This mixing term is capable of ensuring that the mass of the
associated particle is independent of the metric characteris-
tics of the space. It is known in the literature as a topological
term [35–37]. We also exhibit the field equations, the Bianchi
identities and the conservation laws.
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Consider the action in 5D whose corresponding Lagran-
gian density is as follows:

L=−1

4
Fμ̄ν̄ F μ̄ν̄ +α Hμ̄ν̄κ̄λ̄ H μ̄ν̄κ̄λ̄+β εμ̄ν̄κ̄λ̄ρ̄ Aμ̄∂ν̄Cκ̄ λ̄ρ̄ ,

(1)

where Aμ̄ is the Abelian vector and Cμ̄ν̄κ̄ is the 3-form gauge
field, one of the main elements of this study. The notation
of the indices in 5 dimensions is μ̄ = {0, 1, 2, 3, 4}. The
tensor Fμ̄ν̄ is the usual electromagnetic field strength, and the
tensor Hμ̄ν̄κ̄λ̄ is the completely antisymmetric field strength
associated with the 3-form field, Cμ̄ν̄κ̄ :

Hμ̄ν̄κ̄λ̄ = ∂μ̄Cν̄κ̄ λ̄ − ∂ν̄Cλ̄κ̄μ̄ + ∂κ̄Cλ̄μ̄ν̄ − ∂λ̄Cμ̄ν̄κ̄ . (2)

The parameters α and β are both real. It is not difficult to
check that the β-parameter has mass dimension. The action
defined through the Lagrangian (1) is invariant under the
following Abelian gauge transformations in 5D:

Aμ̄ �−→ A ′̄
μ = Aμ̄ + ∂μ̄
, (3)

Cμ̄ν̄κ̄ �−→ C ′̄
μν̄κ̄ = Cμ̄ν̄κ̄ + ∂μ̄ξν̄κ̄ + ∂νξκ̄μ̄ + ∂κ̄ξμ̄ν̄ , (4)

where 
 and ξμ̄ν̄ are real functions and ξμ̄ν̄ is an anti-
symmetric tensor field. The transformation (3) is the one
already known from electrodynamics, U (1)Aμ̄

, whereas (4)
is the antisymmetrized version of the gauge transformation
for a rank-3 tensor, U (1)Cμ̄ν̄κ̄

. Thus, the action is said to be
U (1)Aμ̄

⊗ U (1)Cμ̄ν̄κ̄
-invariant. The Lagrangian (1) gives us

the field equations

∂μ̄F μ̄ν̄ + 6β ˜H ν̄ = 0, (5)

8α ∂μ̄H μ̄ν̄κ̄λ̄ − β ˜F ν̄κ̄ λ̄ = 0. (6)

where the relations between the dual tensors ˜F μ̄ν̄κ̄ and Fμ̄ν̄

are given by the expressions

Fμ̄ν̄ = − 1

3! εμ̄ν̄κ̄ᾱβ̄
˜F μ̄ν̄κ̄ and ˜Fμ̄ν̄κ̄ = 1

2! εμ̄ν̄κ̄λ̄ρ̄ F λ̄ρ̄ . (7)

As for the relations between ˜H μ̄ and Hμ̄ν̄κ̄λ̄, the expressions
are given by

Hμ̄ν̄κ̄λ̄ = εμ̄ν̄κ̄λ̄ρ̄
˜H ρ̄ and ˜Hμ̄ = 1

4! εμ̄ν̄κ̄λ̄ρ̄ H ν̄κ̄ λ̄ρ̄ . (8)

The Bianchi identities associated to the fields F μ̄ν̄ and Hμ̄ν̄κ̄λ̄

are, respectively:

∂μ̄Fν̄κ̄ + ∂ν̄ Fμ̄κ̄ + ∂κ̄ Fμ̄ν̄ = 0, (9)

∂μ̄ Hν̄κ̄ λ̄ρ̄ + ∂ν̄ Hκ̄ λ̄ρ̄μ̄ + ∂κ̄ Hν̄λ̄μ̄ρ̄

+∂λ̄ Hν̄κ̄ ρ̄μ̄ + ∂ρ̄ Hμ̄νκ̄λ̄ = 0. (10)

Expression (10) can also be cast in a more compact form in
terms of the dual of Hμ̄ν̄κ̄λ̄, i.e.:

∂μ̄
˜H μ̄ = 0. (11)

The field equations (5) and (6) are coupled and we must nec-
essarily decouple them in order to implement the procedure
that will reveal the mass of the particle(s) associated(s) with
both fields. It yields
(

� − 3

4α
β2

)

Fμ̄ν̄ = 0, (12)

and
(

� − 3

4α
β2

)

Hμ̄ν̄κ̄λ̄ = 0. (13)

Therefore, it is noted from (12) and (13) that both fields
are shown to exhibit the same mass term, which is given by

ξ = −3β2

4α
, where it is considered that the parameter α must be

restricted to a negative real number. The energy-momentum
tensor is obtained by multiplying Eq. (5) by Fν̄ᾱ and using
the following relation between the dual fields:

˜F ν̄κ̄ λ̄ Hν̄κ̄ λ̄ᾱ = −6Fν̄ᾱ
˜H ν̄ . (14)

Then we insert (6) to get

−∂μ̄(8ᾱH μ̄ν̄κ̄λ̄ Hν̄κ̄ λ̄ᾱ) + 8αH μ̄ν̄κ̄λ̄∂μ̄Hν̄κ̄ λ̄ᾱ

+∂μ̄(F μ̄ν̄ Fν̄ᾱ) − F μ̄ν̄∂μ̄Fν̄ᾱ = 0. (15)

Thus, replacing the Bianchi identities (9), (10), and using the
relation

2Fν̄ᾱ∂μ̄F μ̄ν̄ = ∂μ̄(16αH μ̄ν̄κ̄λ̄ Hν̄κ̄ λ̄ᾱ) + ∂ᾱ(2αH2
μ̄ν̄κ̄λ̄

), (16)

we obtain the continuity equation

∂μ̄�
μ̄
ᾱ = 0, (17)

where �
μ̄
ᾱ , the energy-momentum tensor associated with the

Lagrangian (1), is given by

�
μ̄
ᾱ = −8α

(

H μ̄ν̄κ̄λ̄Hν̄κ̄ λ̄ᾱ + δ
μ̄
ᾱ

1

8
H 2

μ̄ν̄κ̄λ̄

)

+F μ̄ν̄ Fν̄ᾱ + δ
μ̄
ᾱ

1

4
F 2

μ̄ν̄ . (18)

Comparing the second term of �
μ̄
ᾱ with the kinetic term of the

rank-3 tensor field in (1), we can set the value of the parameter

as α = −1/8. Thus, we rewrite the mass as m2 := −3β2

4α
and

thus the value of β is fixed. Therefore, the topological mass
term, �, is given by

� = m√
6

εμ̄ν̄κ̄λ̄ρ̄ Aμ̄∂ν̄Cκ̄ λ̄ρ̄ . (19)

The energy-momentum tensor is written in terms of the field-
strength tensors, then it is naturally invariant under the gauge
transformations (3) and (4). It is also symmetrical; the expres-
sion (18) can be rewritten in terms of the dual field of Hμ̄ν̄κ̄λ̄

as follows:

�
μ̄
ᾱ = 6 ˜H μ̄

˜Hᾱ − δ
μ̄
ᾱ 3 ˜H 2

μ̄ + F μ̄ν̄ Fν̄ᾱ + δ
μ̄
ᾱ

1

4
F 2

μ̄ν̄ . (20)
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Table 1 Components of tensor field F μ̄ν̄ and dual tensor of H μ̄ν̄ρ̄λ̄. The
indices i, j, k = 1, 2, 3 refer to the space components in 4-dimensional
space-time

F μ̄ν̄
˜H μ̄

F0i = −−→
Ei ˜H0 = χ

Fi j = −εi jk
−→
Bk ˜Hi = −→

Yi

F04 = −b ˜H4 = S

Fi4 = −→ei

2.1 Decomposition into irreducible components of SO(3)

To carry out the decomposition of the energy-momentum ten-
sor (20), the field equations (5), (6), and the Bianchi identities
(9) and (11) in terms of irreducible components of SO(3),
we initially make the identification of each sector of Fμν

and ˜Hμ with the corresponding irreducible components of
SO(3) as listed in Table 1:

From (17), we extract the components of the conserved
energy-momentum tensor �0

ᾱ , so that the energy, the Poynt-
ing vector, and a new density pressure associated with the
extra dimension are expressed, respectively, as follows:

�0
0 = 1

2
(E2 + B2 + b2 + e2) − 3(χ2 + Y 2 + S2) (21)

�0
i = −(

−→
E × −→

B )i + b−→ei + 6χ
−→
Yi (22)

�0
4 = −−→

E · −→e + 6χ S. (23)

Going on with the procedure for extracting the components
of the energy-momentum tensor, we see that the stress tensors
read

�i j = −−→
Ei

−→
E j − −→

Bi
−→
B j + −→ei

−→e j − 6
−→
Yi

−→
Y j (24)

�i4 = (b
−→
E + −→e × −→

B )i − 6
−→
Yi S (25)

�44 = 1

2
(E2 − B2 + e2 − b2) − 3(S2 + χ2 − Y 2). (26)

In Table 1,
−→
E ,

−→
B , χ and

−→
Y are the field strengths associated

to the Maxwell-like field and the 2-form potential, respec-
tively. On the other hand, −→e , b and S constitute what we call
the dark sector of our extended 4-dimensional electrodynam-
ics [13]. We name it dark sector because it is connected to the
3-form potential whose gauge symmetry is not associated to
any sort of matter charge, contrary to the U (1)-symmetry of
vector bosons whose corresponding charge appears in phase
symmetry transformations. At this point, we would like to
point out the work of Ref. [38], where the author introduces
a second photon, which he refers to as the shadow photon
or paraphoton, an unobserved photon. In our case, what we
dub as the dark sector is the particle associated to the prop-
agation of −→e and b. In our model, there remains a scalar, S,
which is also part of what we call the dark sector. It would be

interesting, but we are not doing this here, if we later work
out astrophysical constraints on this dark sector as, it is done
in the series of papers quoted in Refs. [39–41].

The right-hand side of Einstein’s equation is essentially
described by the energy-momentum tensor. This constitutes
a unified relation (arising from the space-time symmetry)
between the energy density and the pressure in the sys-
tem. In a 5-dimensional model, one identifies in the energy-
momentum tensor the presence of a sector able to sub-
mit the system, through a particular configuration of the
fields (26), to a negative pressure which, in its turn, char-
acterizes the effect of accelerated inflation of the Universe,
the effect of the so-called dark energy. As a result of the
observations, the inflationary profile of the Universe changes
over time [42,43]. Currently, it presents itself as acceler-
ated [44,45]. This changing behavior in the inflationary
profile may be the result of changes in the configuration
of the present fields in each phase of the history of the
Universe.

In the paper of Ref. [11], the author argues that the tiny
value of the cosmological constant can be phenomenolog-
ically explained by the use of a 3-form. We also adopt the
3-form, but we consider that, for the sake of electromagnetic
effects, the cosmological constant is tiny enough, so that we
neglect the curvature of the (anti-de Sitter) space. In view
of that, we adopt Minkowski space as the space-time back-
ground. Then we attribute to the presence of a specific sector
of the energy-momentum tensor in 5D, the effect that mimics
dark energy, by virtue of the use of a 3-form in our model.

From what we have discussed above, our work sets out as a
possible theoretical support to the paper [11] in order to pro-
vide a justification to the fact that the 3-form potential yields
a negative pressure, as suggested by the presence of the �4

4-
component of the energy-momentum tensor (26), which may
become negative depending on the particular configuration
of the fields (

−→
E ,

−→
B ,

−→e , b, χ, S and
−→
Y ).

The topological mass term (19) used in our action does
not affect—by construction—the energy-momentum ten-
sor (20), once it is metric-independent. Hence, if the �4

4-
component shows up as a negative contribution, it happens
regardless the mass-like term we adopt. This �4

4, which
is negative in 5D, may play the role of the negative pressure
associated to a (positive) cosmological constant in 4D, which
is a possible landscape to support an accelerated expansion
of our Universe.

2.2 Radiation fields in 4D

Next we exhibit the field equations in 5D extracted from the
Lagrangian (1) where it is considered fixed constants α and
β as has been detailed in the previous section. The equations
are expressed in terms of the components

−→
E ,

−→
B , −→e and b of
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Table 2 Field equations and their sources

∂μ H μ̄ν̄κ̄λ̄ + m√
6
˜F ν̄κ̄ λ̄ = J ν̄κ̄ λ̄ J ν̄κ̄ λ̄

−−→∇ S + m√
6
(
−→e ) = −→

λ λk = 1
2 εi jk J 0i j

−→∇ × −→
Y + m√

6

−→
B = −→

ζ ζ i = J 0i4

∂
−→
Y

∂t + −→∇ χ + m√
6

−→
E = −→σ σi = 1

2 εi jk J jk4

∂S
∂t + m√

6
b = τ τ = −εi jk J i jk

Fμν and of the components χ , S and
−→
Y of Hμνκλ including

the mass terms.
We will adopt a dimensional reduction scheme known as

Scherk–Schwarz reduction [34] where it is considered that
all potentials and fields do not depend on the extra dimension,
i.e., it is considered that the derivatives of any field to the fifth
coordinate is null, i.e., ∂4(any field) = 0. The Eq. (5) in the
presence of an external source Jμ, when it is decomposed
reveals the following equations:
−→∇ · −→

E + m
√

6χ = ρ (27)

−→∇ × −→
B + m

√
6

−→
Y = −→

j + ∂
−→
E

∂t
(28)

−→∇ · −→e + m
√

6 S = js + ∂b

∂t
. (29)

When Eq. (6) is decomposed, it reveals the equations listed
on Table 2:

As for the Bianchi identity (9), when it is decomposed
reveals:

−→∇ × −→
E = −∂

−→
B

∂t
, (30)

−→∇ · −→
B = 0, (31)

−→∇ × −→e = 0, (32)

−→∇ b = ∂
−→e
∂t

. (33)

And finally, the second Bianchi identity gives us just one
expression:

∂χ

∂t
+ −→∇ · −→

Y = 0. (34)

This is a continuity equation involving the components
(χ,

−→
Y ). It appoints that

� :=
∫

R
d3x χ(x, t) (35)

is a conserved quantity of model.
It is important to clarify that, although we write down

and study Maxwell’s equations in the 5 dimensions, we shall
actually carry out a dimensional reduction to (1+3)D and,
whenever we consider our electromagnetic fields confined to
the 4-dimensional space, there appear extra fields which are

inherited from 5 dimensions upon our dimensional reduction.
So, we are truly considering our electromagnetic interaction
in (1+3)D, but we take into account new fields that show up
as a by-product of the 5-dimensional space-time where we
have set up our physical scenario.

3 The fermion sector in 5D and its dimensional
reduction to 4D

In this section, we add to the action corresponding to (1) a
fermion sector in 5 dimensions:

S5D =
∫

d5x

[

ψ̄ (iγ μ̄ Dμ̄ − m f ) ψ − 1

4
Fμ̄ν̄ F μ̄ν̄

−1

8
Hμ̄ν̄κ̄λ̄H μ̄ν̄κ̄λ̄ + m√

6
εμ̄ν̄κ̄λ̄ρ̄ Aμ̄∂ν̄Cκ̄ λ̄ρ̄

]

, (36)

where we insert the covariant derivative in order to study the
interaction of the Dirac field with the gauge fields

Dμ̄ := ∂μ̄ + ieAμ̄ + ig ˜Hμ̄, (37)

and the spinor ψ is a Dirac fermionic field in 5D. The γ -
matrices are defined as γ μ̄ = (γ μ, γ 4), with γ 4 = iγ5 and
γ5 = iγ 0γ 1γ 2γ 3 such that they satisfy the anti-commutation
relations

{γ μ, γ ν} = 2ημν, {γ μ, γ5} = 0, (38)

and the conditions (γ5)
† = γ5, and (γ5)

2 = 1.
As already stated previously, the fermionic matter is

charged only under the U (1)-symmetry of the vector field.
It has no charge under the Abelian symmetry of the 3-form
gauge potential; this is why the latter is only non-minimally
coupled to the 3-form Cμνκ -field.

The field equations derived from for the gauge fields in
the presence of fermions are given by

∂μ̄F μ̄ν̄ + √
6m ˜H ν̄ = eψ̄γ ν̄ψ (39)

and

∂μ̄H μ̄ν̄κ̄λ̄ + m√
6

˜F ν̄κ̄ λ̄ = 4gεμ̄ρ̄ν̄κ̄λ̄∂μ̄(ψ̄γρ̄ψ), (40)

from which we identify the source terms for each equation:

J μ̄
F = eψ̄γ μ̄ψ (41)

and

J μ̄ν̄κ̄
H = 4gεμ̄ν̄κ̄λ̄ρ̄∂λ̄(ψ̄γρ̄ψ). (42)

We may notice that these currents arise due to the presence of
the mixing term between the gauge fields in the Lagrangian.
J μ̄ν̄κ̄

H is a topological current, which means that we have a cur-
rent that is conserved without any reference to the equations
of motion and no continuous symmetry of the Lagrangian
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or the action is associated to this conservation equation. In
other words, we have an identically conserved current.

The current J μ̄ν̄κ̄
H above, when dimensionally reduced to

4D, gives rise precisely to the pseudo-tensor current to which
the vortex gauge field of [32] couples. In our case, the current
stems from the non-minimal coupling present in the covariant
derivative (37) as an imprint of the 5-dimensional world. So,
this topological current in 5D plays the crucial role of induc-
ing the gauge-invariant mass term of reference [32] upon its
coupling to the vortex gauge field.

3.1 Dimensional reduction

Next, one redefines the complete action, but now having
undergone a procedure of dimensional reduction from 5
to 4 dimensions. The Greek indices follow the notation
μ̄ = (μ, 4) where μ indicates the usual 4 dimensions and μ̄

indicate 5 dimensions, i.e., the 4 usual dimensions plus an
extra spatial dimension.

Here, the 1-form Aμ̄ can be divided into a vector sector
and a scalar sector: Aμ̄ = (Aμ, A4). As for the 3-form, it
can be split into two tensor sectors C μ̄ν̄κ̄ = (Cμνκ , Cμν4).
One redefines the scalar component as A4 = φ and one then
identifies the sector Cμν4 = 1√

3
Bμν as the one known in the

literature as the Kalb–Ramond field [46].
Thus, the 5D action is reduced to 4D and can be expressed

as follows:

S4D =
∫

d4x

[

ψ̄ (iγ μDμ − m f ) ψ − 1

4
F 2

μν

+1

6
G 2

μνκ − 2
√

2

3
m εμνκλ Aμ∂ν Bκλ

+1

2
(∂μφ)2 + 1

2
(∂μ Xμ)2 − m φ ∂μ Xμ

+ieψ̄γ5ψφ + i√
6

g ψ̄γ5ψ (∂μ Xμ)

]

, (43)

where

Gμνκ = ∂μ Bνκ + ∂ν Bκμ + ∂κ Bμν, (44)

is the field strength associated with the Kalb–Ramond field.
By considering parity transformations in 5D, we can see that
both φ and ∂μ Xμ behave as pseudo-scalars in 4D. Therefore,
the action (43) is absolutely parity-invariant in 4D. The vector
field Xμ is the dual of Cμνκ

Xμ := 1√
6

εμνκλCνκλ, (45)

and, by using the gauge transformation (4) of Cμνκ , we obtain

Xμ ′ = Xμ + 1

2
√

6
εμνκλ∂νξκλ, (46)

and hence

∂μ Xμ ′ = ∂μ Xμ, (47)

i.e., the vector field Xμ is purely longitudinal. By using
the field equations (12) and (13), this dimensional reduc-
tion shows that the bosonic fields in the reduced action (43)
acquire a mass m2. The field ˜H μ̄ = (˜Gμ, ˜H4) may be
split in ˜H4 = 1√

6
∂μ Xμ and ˜Gμ, i.e., the dual of Gμνκ :

˜Gμ = (χ,
−→
Y ). The dual of Gμνκ is given by

˜Gμ = 1

6
εμνκλGνκλ. (48)

Therefore, the covariant derivative of (43) in 4 dimensions is

Dμ = ∂μ + ieAμ + ig˜Gμ. (49)

Here, the 3-form gauge field in 4D is nothing but a longitudi-
nal vector, because it propagates its longitudinal part and sup-
presses its transverse component, as Eq. (47) suggests. The
light-shining-through-a-wall experiments (LSW) [47,48] are
capable of detecting longitudinal radiation [49].

In connection with the works by Antoniadis et al. [50,51]
and Ringwald et al. [49], what they consider in 4D as a
pseudo-scalar (axionic electrodynamics), turns out to orig-
inate, in our case, from the mixing between the 3-form (Xμ)

and the φ ≡ A4 (pseudo-scalar). So, the Antoniadis’ axion
is for us a remnant of the 5-dimensional fields in the form of
this mixing.

Actually, the papers by Antoniadis [50,51] show that our
3-form which appears in 4D must in fact be a pseudo-scalar.
Our vector field, Xμ, just propagates the longitudinal part
because this is its gauge-invariant component, i.e., this vector
field carries the spin-0 and the spin-1 components, but the
gauge symmetry (46) acts to gauge away precisely the spin-
1 piece.

These two new bosons (vector and scalar) that appear
simultaneously in our model can be interpreted, in fact, as
“two sides of the same coin”. A “coin” that is conceived
in a 5-dimensional scenario, but, from the point of view of
our 4-dimensional world, leads us to see it as if there were
two separate entities. However, from the point of view of the
5-dimensional bulk, it is only one entity, since the 5 dimen-
sions provide a unified view of these two fields. In 4D, we
see two entities, the vector and scalar bosons, as a result of
dimensional reduction. Under this unified interpretation, the
masses of the “two particles” being the same would also sug-
gest that there is a common entity the propagates in the bulk
between the branes. Further on, in Sect. 3.3, we shall discuss
the split of this mass degeneracy.

3.2 Considering the gravitational sector

An issue to be investigated concerns the introduction of the
gravitational coupling in the action (36) to subsequently per-
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form a dimensional reduction to 4D. For this purpose, we
consider the action (36), now in the presence of gravity, to
be given by

S5D =
∫

d5x
√−g

[

− R

2κ2 + ψ̄ (iγ μ̄Dμ̄ − m f ) ψ

−1

4
gμ̄ᾱgν̄β̄ Fμ̄ν̄ Fᾱβ̄ − 1

8
gμ̄ᾱgν̄β̄gρ̄γ̄ gλ̄σ̄

×Hμ̄ν̄κ̄λ̄Hᾱβ̄γ̄ σ̄ + m√
6

εμ̄ν̄κ̄λ̄ρ̄

√−g
Aμ̄∂ν̄Cκ̄ λ̄ρ̄

]

, (50)

where κ is the gravitational coupling (related to the Newton
constant by κ2 = 8πG), R is the Ricci scalar, and the covari-
ant derivative, Dμ̄, acting on the fermions contains the spin
connection, �μ̄, as given below

Dμ̄ = ∂μ̄ + ieAμ̄ + ig ˜Hμ̄ + ig′ �μ̄. (51)

The coupling of gravity to fermions requires the vielbein
formalism, the so-called first-order approach. Here, we carry
out a natural extension of the formalism to 5 dimensions.
It is well known in the literature that the metric of the
curved space-time is written as eμ̄

a eν̄
b gμ̄ν̄ = ηab, in our

case, ηab(+,−,−,−,−) is the Minkowski metric on the
tangent space, and eμ̄

a is the 5-bein. The spin connection
is expanded in the basis of the Lorentz group generators,
�ab = i

4 [γ a, γ b], as �μ̄(x) = 1
2 �ab ωab

μ̄ (x), where a, b =
{0, 1, 2, 3, 4} are the frame indices of the Lorentz group. The
gamma-matrices, γ μ̄, are defined as γ μ̄ = γ aeμ̄

a and fulfill
the Clifford algebra

{

γ μ̄, γ ν̄
} = eμ̄

a eν̄
b {γ a, γ b} = 2 gμ̄ν̄ .

The components of the spin connection are related to the
vielbein and metric as follows:

ωab
μ̄ = 1

2
ea
ν̄ ∂μ̄ebν̄ + 1

2
eaν̄ ebσ̄ ∂σ̄ gμ̄ν̄ − 1

2
eb
ν̄ ∂μ̄eaν̄

−1

2
ebν̄ eaσ̄ ∂σ̄ gμ̄ν̄ . (52)

In the sector of the gauge fields, the tensor Fμ̄ν̄ remains
unaltered when coupled to the covariant derivative of the
curved space-time. The same is true for the 3-form Hμ̄ν̄ρ̄λ̄.
The 2- and 3-forms Fμ̄ν̄ and Hμ̄ν̄ρ̄λ̄, even if defined with the
usual derivatives, behave like tensors and so there is no need
to redefine them by replacing the ordinary by the covariant
derivatives. Moreover, if the latter are used to redefine F and
G, the gauge symmetries for Aμ̄ and Cμ̄ν̄ρ̄ would be explic-
itly broken if torsion is present. This is the case, since we have
fermions. So, to keep the gauge symmetries, the expressions
for F and H are not changed in presence of gravity, and
covariance under general coordinate transformations is also
guaranteed. To get information on the excitation spectrum of
the gravity sector, we take the linear approximation for the
gravitational field:

gμ̄ν̄ (x) = ημ̄ν̄ + κ hμ̄ν̄ (x), (53)

where we consider just linear terms in the κ constant. In so
doing, we obtain the action (50) linearized in 5D as

S5D =
∫

d5x

[

−1

4

(

∂μ̄hν̄ρ̄

)2+ 1

2

(

∂μ̄hμ̄ν̄
)2+ 1

2
h̄ ∂μ̄∂ν̄hμ̄ν̄

+1

4

(

∂μ̄h̄
)2 + +ψ̄ (iγ μ̄Dμ̄ − m f ) ψ − 1

4
F 2

μ̄ν̄

−1

8
H 2

μ̄ν̄κ̄λ̄
+ m√

6
εμ̄ν̄κ̄λ̄ρ̄ Aμ̄∂ν̄Cκ̄ λ̄ρ̄ + O(κ)

]

, (54)

where h̄ := h μ̄
μ̄ and we have omitted the terms of order

O(κ), which include the gravitational interactions of the
fermions and gauge fields, since they are not important for
what we shall discuss in the sequel. Actually, we wish to
keep track of the interference, in 4D, between the degrees
of freedom stemming from the gravitational sector and the
bosonic fields in the gauge sector. This is why we include the
gravity-fermion interactions in the O(κ)-term of the action
above. In this action, the h-Lagrangian is invariant under the
gauge transformation

hμ̄ν̄ �−→ h ′̄
μν̄ = hμ̄ν̄ + κ−1 (

∂μ̄ξν̄ + ∂ν̄ξμ̄

)

, (55)

where ξμ̄ is any vector function in 5D.
Now, we investigate the dimensional reduction to 4D

in the kinetic terms of the h-field by splitting the compo-
nents hμ̄ν̄ = {hμν, hμ4, h44}, and defining the components
hμ4 := V μ, h44 := χ . We adopt the previous condition that
∂4(any field) = 0, so the 5D action takes the form below in
4D:

S4D =
∫

d4x

[

−1

4

(

∂μhνρ

)2 + 1

2

(

∂μhμν
)2 + 1

2
h ∂μ∂νhμν

+1

4

(

∂μh
)2 −1

4

(

∂μVν − ∂ν Vμ

)2 + ψ̄ (iγ μ Dμ − m f ) ψ

−1

4
F 2

μν + 1

6
G 2

μνκ − 2
√

2

3
m εμνκλ Aμ∂ν Bκλ

+1

2
(∂μφ)2 + 1

2
(∂μ Xμ)2 − m φ ∂μ Xμ + O(κ)

]

, (56)

where h := h μ
μ . In this expression, we notice the emergence

of a new vector field, V μ, and a mixing term of a scalar field,
χ , with the weak gravitational field hμν . The kinetic term
for the χ -field naturally drops out. It is then reasonable to
truncate the χ -field in the reduction, so that χ = 0. The
kinect term for the vector field V μ is invariant under the
gauge transformation, Vμ �−→ V ′

μ = Vμ +κ−1∂μξ4(x); this
is readily checked by making the dimensional reduction in
(55). Therefore, we have obtained an action in 4D with three
vector fields, Aμ, V μ, Xμ, in which there is no mass term
associated to the V μ-field.

3.3 The propagators of the {Aμ, Bνκ , Xα, φ}-multiplet

The propagators associated with the Lagrangian (43) are
obtained after the inclusion of the corresponding gauge-
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fixing terms:

Lg f = − 1

2α
(∂μ Aμ)2 − 1

2β
(∂μBμν)2

− 1

4ξ

(

∂μ Xν − ∂ν Xμ

)2
. (57)

By adding it to the free part of (43), we have L0 = L04D +
Lg f ; where

L04D = ψ̄ (iγ μDμ − m f ) ψ − 1

4
F 2

μν − 1

2α
(∂μ Aμ)2

+1

6
G 2

μνκ − 1

2β
(∂μBμν)2− 2

√
2

3
m εμνκλ Aμ∂ν Bκλ

+1

2
(∂μ Xμ)2 + 1

2
(∂μφ)2 − m φ ∂μ Xμ. (58)

In the sector of gauge fields, we cast the Lagrangian into the
form below:

L04D = 1

2
Aμ �

(

θμν + 1

α
ωμν

)

Aν

−1

2
Bμν�

[

(

P1
b

)

μν,κλ
+ 1

2β

(

P1
e

)

μν,κλ

]

Bκλ

−1

2
φ�φ − 1

2
Xμ�ωμν Xν −

√
2

3
m AμSμκλ Bκλ

+
√

2

3
m BκλSκλμ Aμ − 1

2
m φ ∂μ Xμ

+1

2
m Xμ∂μφ, (59)

written in terms of the projection operators:

θμν + ωμν = ημν, ωμν = ∂μ∂ν

� (60)
(

P1
b

)

μν,κλ
= 1

2

(

θμκθνλ − θμλθνκ

)

, (61)

(

P1
e

)

μν,κλ
= 1

2

(

θμκωνλ − θμλωακ − θνκωμλ + θνλωμκ

)

,

(62)

Sμνκ = −mεμνκλ∂
λ, (63)

which satisfy the relations
(

P1
b

)

μν,κλ

(

P1
b

)κλ

, ρσ
=

(

P1
b

)

μν,ρσ
, (64)

(

P1
e

)

μν,κλ

(

P1
e

)κλ

, ρσ
=

(

P1
e

)

μν,ρσ
, (65)

(

P1
b

)

μν,κλ

(

P1
e

)κλ

, ρσ
= 0, (66)

(

P1
e

)

μν,κλ

(

P1
b

)κλ

, ρσ
= 0, (67)

Sμνα Sακλ = −2 �
(

P1
b

) , κλ

μν
, (68)

(

P1
b

)

μν,αβ
Sαβκ = S κ

μν , (69)

Sκαβ(P1
b )

μν
αβ, = Sκμν, (70)

(

P1
e

)

μν,αβ
Sαβκ = 0, (71)

(

P1
e

)

μν,αβ
Sαβκ = 0, (72)

Sκ
αβ(P1

e )αβ,μν = 0. (73)

It is convenient to rewrite the Lagrangian in matrix form. For
this task, we split the matrix elements as

Pμν = �
(

θμν + 1

α
ωμν

)

, (74)

Qμρσ = −Rμνσ = 2
√

2

3
m Sμρσ , (75)

Sκλ,ρσ = −�
[

(P1
b )κλ,ρσ + 1

2β
(P1

e )κλ,ρσ

]

. (76)

Wαβ ≡ −�ωαβ + 1

ξ
�θαβ (77)

Let us write L0 = 1
2N

t
MN, where N

t = (

Aμ Bκλ Xα φ
)

and

M =

⎛

⎜

⎜

⎝

Pμν Rμρσ 0 0
Qκλν Sκλ,ρσ 0 0

0 0 Wαβ m∂α

0 0 −m∂β −�

⎞

⎟

⎟

⎠

. (78)

After that, we invert the M-matrix to find the propagators
listed below:

〈φ φ〉 = i

k2 − m2 , (79)

〈Xμ Xν〉 = i

k2 − m2

kμkν

k2 − i
ξ

k2

(

ημν − kμkν

k2

)

, (80)

〈φ Xμ〉 = −〈Xμ φ〉 = m

k2 − m2

kμ

k2 , (81)

〈AμBνκ 〉 = −〈Bμν Aκ 〉 = m

k2 − m2

εμνκλkλ

k2 , (82)

〈Aμ Aν〉 = − i

k2 − m2

[

ημν + (α − 1)
kμkν

k2

]

+α
im2

k2 − m2

kμkν

(k2)2 , (83)

〈Bμν Bκλ〉 = i

k2 − m2

[

1μν,κλ +
(

β − 1

2

)

Kμν,κλ

]

− iβm2

k2 − m2

Kμν,κλ

k2 , (84)

where Kμν,κλ := ημκ
kνkλ

k2 − ημλ
kκ kν

k2 − ηνκ
kμkλ

k2 + ηνλ
kμkκ

k2 ,

and 1μν,κλ := 1
2 (ημκηνλ − ημληνκ).

In 5D, a 1-form gauge potential carries 3 on-shell degrees
of freedom (d.f.); a 3-form gauge field propagates just 1 on-
shell d.f. Therefore, we have 4 physical degrees of freedom
in the sector of gauge bosons. In 4D, consequently we must
have these 4 d.f. distributed among the fields we end up with
upon dimensional reduction. Considering the propagators of
the φ- and Xμ-sectors (φ comes from the Maxwell field in
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5D and behaves as a pseudo-scalar in 4D; Xμ comes from
the 3-form in 5D and is the dual of the corresponding 3-
form in 4D, so it does not propagate any on-shell d.f.), it
becomes clear that the gauge sector in 4D also carries 4 d.f.,
as it should be. The other 3 d.f. are carried by the mixed
{Aμ, Bνκ }-system, in such a way that Aμ propagates 2 d.f.,
whereas Bνκ carries 1 d.f., due to its gauge symmetry; this
then means that these two fields mixed together describe
a single massive and neutral spin-1 gauge particle, which
we interpret as a sort of paraphoton. Instead of appearing
in a mixed F F-term [52], our paraphoton is the particle
associated to the {Aμ − Bμν}-system with a gauge-invariant
mass.

Before ending this section, we should clarify two aspects.
The first point concerns the massive pseudo-scalar particle
described by the {φ, Xμ}-system. The 5D → 4D reduction
clearly shows that the Xμ-field appears in 4 dimensions only
through its divergence. All terms with Xμ in Eq. (43) exhibit
a ∂ · X ; Xμ never appears otherwise. This means that we are
allowed to actually redefine a newfield: s ≡ ∂μ Xμ, which
is then an auxiliary field and can therefore be eliminated
through its classical field equation:

s − mφ + i√
6

gψ̄γ5ψ = 0. (85)

Since s is an auxiliary field, it is correct to replace it
in the original action (43) through its algebraic equation
above, from which we get the canonical Klein–Gordon
action ( 1

2∂μφ∂μφ − 1
2 m2φ2), along with a quartic fermionic

interaction term, (ψ̄γ5ψ)2. This confirms that the{φ, Xμ}-
system describes nothing but a massive pseudo-scalar, which
we associate to the axion. The {Aμ, Bνκ }-system describes
the 3 on-shell d.f. of a neutral massive spin-1 particle.
It is, however, mass-degenerate with φ. Nevertheless, the
4-dimensional model does not stand by itself. We sug-
gest, but we do not go through that in detail here (it is
not our goal) that Aμ may couple to a Higgs sector in
such a way that, upon a spontaneous symmetry breaking
induced by this Higgs sector, its mass splits from the axion
mass.

We take here the Higgs coupling to Aμ as given by the
usual photon–paraphoton kinetic mixing χ -parameter [52].
According to the detailed discussion in the paper by Jaeckel
and Ringwald [53–55], χ ranges between 10−16 and 10−4,
as consideration based on string theory points to. In our case,
if, as stated above, the Higgs–paraphoton coupling is given
by a χ -parameter in the range 10−16 to 10−12, the axion–
paraphoton mass splitting lies in the sub-eV range (we recall
that 〈Higgs〉 ∼ 246 GeV), so that the mass degeneracy is
lifted. So, in our axion–paraphoton model, the χ -parameter is
also present, but it appears in the Higgs–paraphoton coupling,
and it is compatible with axion and paraphoton masses both
in the sub-eV scale.

1

1

2

2

−→q

−−→p − →q
2

−−→p +
→q
2

−→p +
→q
2

−→p − →q
2

Fig. 1 Momentum assignments in the center-of-mass frame

3.4 Spin-dependent potentials

In this section, we study the profiles of the interparticle (non-
relativistic, but spin-and velocity-dependent) potentials when
the virtual particles associated to the fields involved in the
propagators above are exchanged. These potentials could be
suitably extended to macroscopic situations if the exchanged
mass, m, is small enough. The spin- and velocity-dependent
shapes could find some possible application for a physics
tested at the sub-millimetric scale, actually, 10−1 mm. But
in the case considered here, the mass does not break gauge
symmetry, so that it would be non-trivial to keep track of the
influence of the particular mass mechanism on the form of
the interaction particle. We consider the methodology used
in [56,57], for which the potential can be obtained, in the
first Born approximation, by performing the Fourier integral
of the amplitude,

V (
−→r ,−→v ) = −

∫

d3−→q
(2π)3 ei−→q · −→r A(

−→q , m−→v ). (86)

In the following, we shall use the center-of-mass frame,
whose momentum assignments are fixed as in Fig. 1.

We begin by reviewing a well-known case: two pseudo-
scalar fermionic currents interacting via the scalar propagator
〈φφ〉, Eq. (79). By applying the Feynman rules, we obtain

iA〈φφ〉 = ū
(

p + q

2

)

(−e1γ5) u
(

p − q

2

)

〈φφ〉
×ū

(

−p − q

2

)

(−e2γ5) u
(

−p + q

2

)

, (87)

which can be rewritten in terms of the pseudo-scalar currents
as

A〈φφ〉 = e1e2
J P S

1 J P S
2−→q 2 + m2

. (88)

So, we take the non-relativistic limit for a pseudo-scalar cur-
rent (see Eq. (A2) in the appendix) to get

A〈φφ〉 = e1e2

4m1m2

(−→q · 〈−→σ 〉1
) (−→q · 〈−→σ 〉2

)

−→q 2 + m2
. (89)
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Finally, we carry out the Fourier integral and obtain [56]:

V 〈φφ〉
P S−P S = − e1e2

4m1m2
V〈φφ〉, (90)

where we define

V〈φφ〉 = [(1 + mr)(〈−→σ 〉1 · 〈−→σ 〉2)

−(3 + 3mr + m2r2)(r̂ · 〈−→σ 〉1)(r̂ · 〈−→σ 〉2)] e−mr

4πr3 . (91)

Let us now move on to the next case, where we take the
〈AB〉-propagator of Eq. (82). The amplitude is given by

iA〈AB〉 = ū
(

p + q

2

)

(−ie1 γ μ
)

u
(

p − q

2

)

〈AμBκλ〉
×ū

(

−p − q

2

) (g2

2
γρ ερνκλ qν

)

u
(

−p + q

2

)

.

(92)

After some algebraic manipulations, it can be rewritten in
terms of vector currents:

A〈AB〉 = − e1g2m
−→q 2 + m2

(

J V
1

)μ (

J V
2

)

μ
. (93)

If we take the contraction between these currents, Eq. (A6),
and perform the Fourier integral, we obtain

V 〈AB〉 = e1g2m δ1δ2
e−mr

4πr
+ e1g2m V〈AB〉

(2) , (94)

where we have defined

V〈AB〉
(2) = δ1δ2

[(

1

m2
1

+ 1

m2
2

)

(−→p 2

4
+ m2

16

)

+
−→p 2

m1m2

]

e−mr

4πr
−

{

−→p ×
[

1

4

(

δ1

m2
2

〈−→σ 〉2 + δ2

m2
1

〈−→σ 〉1

)

+1

2

(

δ1〈−→σ 〉2 + δ2〈−→σ 〉1
)

m1m2

]}

· r̂ (1 + mr)
e−mr

4πr2

+
{

(〈−→σ 〉1 · 〈−→σ 〉2
)

4m1m2
[1 + mr + m2r2]

−
(〈−→σ 〉1 · r̂

) (〈−→σ 〉2 · r̂
)

4m1m2
[3 + 3mr + m2r2]

}

e−mr

4πr3 .

(95)

δ1 and δ2 (as explained in detail in the appendix) vanish if
particle 1 or particle 2 experience a spin flip in the interaction.

Thus, we notice that the first term in Eq. (94) behaves
like a Yukawa term, while V〈AB〉

(2) is suppressed by a factor of

O(v2/c2).
Finally, we calculate the most involved potential, the one

associated with the 〈B B〉-propagator of Eq. (84). The ampli-
tude assumes the form

iA〈B B〉 = ū
(

p + q

2

) (

− g1

2
γ ρ ερξμν qξ

)

u
(

p − q

2

)

〈Bμν Bκλ〉
×ū

(

−p − q

2

) ( g2

2
γα εαβκλ qβ

)

u
(

−p + q

2

)

= − g1g2

4
ερξμν εαβκλ qξ qβ

(

J V
1

)ρ (

J V
2

)

α
〈Bμν Bκλ〉.

(96)

After expressing the product ερξμν εαβκλ in terms of Kro-
necker deltas, this amplitude simplifies as follows:

iA〈B B〉 = g1g2

4
{(J V

1 )μ(J V
2 )μ[2q2 〈Bκλ Bκλ〉

+4qβ 〈Bβκ Bκλ〉 qλ] + 4q2 (J V
2 )α 〈Bαλ Bλκ 〉 (J V

1 )κ

+4(J V
2 )α qβ 〈Bαβ Bκλ〉 (J V

2 )κ qλ }. (97)

Its possible to show, after some lengthy evaluations, that the
terms associated with the operator K, Eq. (84), do not con-
tribute to the amplitude. Therefore, the amplitude does not
depend on the gauge-fixing terms. Then we could take

〈Bμν Bλκ 〉 = i

q2 − m2 1μν, λκ , (98)

which leads to the following result:

A〈B B〉 = g1g2

2

−→q 2

−→q 2 + m2
(J V

1 )μ(J V
2 )μ. (99)

Once again, we use the contraction (A6). The Fourier integral
yields the result:

V 〈B B〉 = g1g2m2

4
δ1δ2

e−mr

4πr
+ g1g2m2

4
V〈AB〉

(2) . (100)

This potential has the same functional form and behavior
as the one obtained in the 〈AB〉-case, Eq. (94).

Now, we shall clarify some points. We emphasize that, by
adopting the Scherk–Schwarz dimension reduction scheme,
such that we decompose μ̄ = (μ, 4) and assume ∂4(any field)

= 0, we neglect the non-zero Kaluza–Klein modes and, con-
sequently, the higher-dimensional Planck mass does not play
any role in our approach. Thus, the 4-dimensional physics
should receive only information on the radius of the extra
dimension. This parameter has not explicitly appeared in
the potentials simply because we have used the same nota-
tion for the couplings constants in 5D and 4D. By carry-
ing out a dimensional analysis of the fields present in the
actions S5D and S4D , we could conclude that, for example,
g5D/

√
L = g4D , where L = ∫

dx4 stands for the length of
the extra dimension (the x4-coordinate). In order to impose
constraints on the radius of extra dimension, we should notice
that the coupling g always appears together with the mass m
in the potentials. So, we need to combine different experi-
ments involving these potentials. We are not following this
path here, since this is not within the scope of the present
paper. But we understand that this point should be the object
of our attention in a forthcoming work.
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The main inheritances from the 5-dimensional physics
appear in the vertex interactions. The spin-dependent terms
show up only at O(v2/c2), since the dimensional reduction
fixes the vertex interactions as a result of what we have in 5D.
If we study the free Lagrangian directly in 4D, Eq. (43), we
have the freedom to fix the interaction by means of (pseudo-
)vector or (pseudo-)tensor currents. These results are pre-
sented in the work of Ref. [58], with spin-dependent terms
in first and second orders in v/c.

If we adopt other dimensional reduction schemes, we
expect to get different results for the potentials. We also
point out a new path: we intend to calculate the interpar-
ticle potential directly in 5D and then take the dimensional
reduction of the 5D-potential, instead of first reducing from
5D to 4D to then compute the potential in 4D. The main
reason is that, in 5D-Minkowski space, we have two spins,
associated with the SO(4) ∼= SU (2)× SU (2)-little group of
Poincaré group in 5D, while in 4D we have only one spin,
since SO(3) ∼= SU (2).

We have preliminary results taking into account the con-
tribution of this new spin in the interparticle potentials.
In some situations, there shall appear new corrections to
the monopole-dipole and dipole-dipole potentials, which
decrease with a power-law dependence on the radius of the
extra dimension, which now play a more fundamental role
than the renormalized coupling constant. We expect to report
on these results soon.

In 4 dimensions, the vector boson Aμ appears as a mas-
sive excitation, so that, rather than a Coulomb-like, we have
a Yukawa-type potential. Newton’s law is reproduced from
the inspection of the graviton sector, for it comes from the
linearization of

√−gR and no mass parameter appears that
endows the gravitation with a mass.

If we are to interpret Aμ as a paraphoton in 4D, then
the mass parameter m should be constrained by the experi-
ments that fix an upper bound on the axion mass. The axion–
paraphoton splitting is taken care of by the χ -parameter,
which we propose to govern the Higgs–paraphoton coupling.

4 Concluding comments

One proposes here to investigate a 5D electromagnetic model
with a (Abelian) topological mass term built up in terms of
a 1-form and a 3-form gauge potential. Such a description
may offer some hint for modeling the so-called dark energy,
due to the presence of the �4

4-component of our energy-
momentum tensor that may correspond to a negative pressure
and may then be describing an expanding system.

Going over into 4D, by following the particular dimen-
sional reduction procedure we have adopted, we identify the
emergence of a sector we refer to as an extra dark sector.

It is associated to an excitation that acts as a scalar photon,
to which a scalar magnetic-like field is related. In this sce-
nario, in 4D, there emerges a neutral massive vector boson
(mass m) along with a neutral pseudo-scalar with the same
mass. The 3-form that yields a negative contribution to the
pressure is responsible (with its mixing to the 4D Abelian
gauge boson inherited from the 5-dimensional 1-form) for
the appearance of two bosons: a longitudinal vector, that is,
an auxiliary field, and a massive spin-1 particle, which we
interpret as a paraphoton. In our formulation, the axion (the
pseudo-scalar component identified as A4) and the parapho-
ton turn out to be mass-degenerate, both considered in the
sub-eV scale. We propose to couple the paraphoton to the
electroweak Higgs scalar with the χ -parameter as the Higgs
gauge coupling, so that the axion and the paraphoton have
their degeneracy lifted with a splitting also in the sub-eV
scale. On the other hand, the massive scalar may be inter-
preted as the axion remnant of the Electrodynamics in 5D
considering that the Chern–Simons term (Abelian) in 5D is
defined as εμ̄νλ̄κ̄μ̄ρ̄ Aν̄ Fλ̄κ̄ Fμ̄ρ̄ and its dimensional reduction
to 4D leads to the axionic term type: θ Fμν

˜Fμν where A4 = θ

[47].
By setting g = 0, i.e., by eliminating the non-minimal

coupling described by ˜Gμ in the covariant derivative, the field
Xμ decouples from the fermions; however, the axionic-like
particle remains coupled, for its coupling is electromagnetic.
We then point out that it is possible to decouple the field Xμ,
and, at the same time, to keep the axion coupled with the
charged fermionic matter. We believe that it would be inter-
esting to consider, from the onset, a Chern–Simons term in
5 dimensions which would naturally induce the axionic cou-
pling in 4D: θ Fμν

˜Fμν . The 5D Abelian Chern–Simons term
is cubic in the gauge field and may provide a very natural
scenario to discuss photon self-interactions and non-linear
effects, with potentially interesting consequences for the
electromagnetic interaction in 4 dimensions. We shall con-
centrate some efforts on this particular issue and we intend
to report on that in a forthcoming paper.

As a final open question, we highlight the study of mag-
netic monopoles in a 5-dimensional scenario, where they
become extended 1-dimensional objects (i.e., strings) that
appear as the dual of point-like charges. So, in 5D, mag-
netic monopoles have their interaction mediated by the 2-
form Kalb–Ramond field. As a follow-up of the present work,
we shall be concentrating efforts to pursue an investigation
of 5D electrodynamics in the presence of (extended) mag-
netic monopoles, so that a 1-, a 2- and a 3-form should all be
present and their effect in connection with negative pressure
and the phenomenon of dark energy in 4 dimensions should
be reassessed.
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Appendix A: Currents in the non-relativistic limit

In this appendix, we collect the currents and their contrac-
tions. We consider the same conventions and notations as
in Ref. [58]. In the non-relativistic limit, the solution to the
Dirac equation, with positive energy, is given by [59]

u(p) ≈ ξ

(

1−→σ ·−→p
2m

)

. (A1)

We take ξ ′ for the Dirac conjugate ū(p). The pseudo-scalar
current (PS), following the parametrization for the first vertex
of Fig. 1, can be written as

J P S
1 = ū

(

p + q

2

)

iγ5 u
(

p − q

2

)

= − i

2m1

−→q · 〈−→σ 〉1,

(A2)

where we use 〈σi 〉1 := ξ ′† σi ξ to denote the expectation
value of the spin matrix, σi , of the particle one.

For the vector current (V ),

(J V
1 )μ := ū

(

p + q

2

)

γ μ u
(

p − q

2

)

; (A3)

the μ = 0-component yields

ū
(

p + q

2

)

γ 0 u
(

p − q

2

)

= δ1 + δ1

2m2
1

(

−→p 2 −
−→q 2

8

)

+ i

4m2
1

(−→q × −→p ) · 〈−→σ 〉1 (A4)

where δ1 := ξ ′†ξ , with δ1 = 0 if particle 1 changes the spin
orientation; otherwise δ1 = 1. The same is true for δ2.

For the space component, μ = i , we have

ū
(

p + q

2

) −→γ u
(

p − q

2

)

=
−→p
m1

δ1 − i

2m1

−→q × 〈−→σ 〉1.

(A5)

The second current, associated with particle 2 or the sec-
ond vertex of Fig. 1 can be obtained by taking q → −q,
p → −p and by exchanging the labels 1 → 2.

Finally, we present the result for the contraction of vector
currents, neglecting terms of the order O(v3/c3),

(

J V
1

)μ (

J V
2

)

μ

≈ δ1δ2 + δ1δ2

[(

1

m2
1

+ 1

m2
2

)

(−→p 2

4
−

−→q 2

16

)

+
−→p 2

m1m2

]

+ (−→q × −→p ) ·
[

i

4

(

δ1

m2
2

〈−→σ 〉2 + δ2

m2
1

〈−→σ 〉1

)

+ i

2

1

m1m2

(

δ1〈−→σ 〉2 + δ2〈−→σ 〉1
)

]

−1

4

1

m1m2

{−→q 2 (〈−→σ 〉1 · 〈−→σ 〉2
) − (−→q · 〈−→σ 〉1

) (−→q · 〈−→σ 〉2
)

}

.

(A6)
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