62 research outputs found

    Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites : a comprehensive analysis of machining-induced damage responses

    Get PDF
    This paper aims at investigating the effects of variable traverse speeds on machining-induced damage of fibre-reinforced composites, using the abrasive water jet (AWJ) drilling. Three different types of epoxy-based composites laminates fabricated by vacuum bagging technique containing unidirectional (UD) flax, hybrid carbon-flax and carbon fibre-reinforced composite were used. The drilling parameters used were traverse speeds of 20, 40, 60 and 80 mm/min, constant water jet pressure of 300 MPa and a hole diameter of 10 mm. The results obtained depict that the traverse speed had a significant effect with respect to both surface roughness and delamination drilling-induced damage responses. Evidently, an increase in water jet traverse speed caused an increase in both damage responses of the three samples. Significantly, the CFRP composite sample recorded the lowest surface roughness damage response, followed by C-FFRP, while FFRP exhibited the highest. However, samples of FFRP and hybrid C-FFRP recorded lowest and highest delamination damage responses, respectively. The discrepancy in both damage responses, as further validated with micrographs of colour video microscopy (CVM), scanning electron microscopy (SEM) and X-ray micro-computed tomography (X-ray μCT), is attributed to the different mechanical properties of the reinforced fibres, fibre orientation/ply stacking and hybridisation of the samples.Peer reviewe

    High-Precision, In Vitro Validation of the Sequestration Mechanism for Generating Ultrasensitive Dose-Response Curves in Regulatory Networks

    Get PDF
    Our ability to recreate complex biochemical mechanisms in designed, artificial systems provides a stringent test of our understanding of these mechanisms and opens the door to their exploitation in artificial biotechnologies. Motivated by this philosophy, here we have recapitulated in vitro the “target sequestration” mechanism used by nature to improve the sensitivity (the steepness of the input/output curve) of many regulatory cascades. Specifically, we have employed molecular beacons, a commonly employed optical DNA sensor, to recreate the sequestration mechanism and performed an exhaustive, quantitative study of its key determinants (e.g., the relative concentrations and affinities of probe and depletant). We show that, using sequestration, we can narrow the pseudo-linear range of a traditional molecular beacon from 81-fold (i.e., the transition from 10% to 90% target occupancy spans an 81-fold change in target concentration) to just 1.5-fold. This narrowing of the dynamic range improves the sensitivity of molecular beacons to that equivalent of an oligomeric, allosteric receptor with a Hill coefficient greater than 9. Following this we have adapted the sequestration mechanism to steepen the binding-site occupancy curve of a common transcription factor by an order of magnitude over the sensitivity observed in the absence of sequestration. Given the success with which the sequestration mechanism has been employed by nature, we believe that this strategy could dramatically improve the performance of synthetic biological systems and artificial biosensors

    Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy

    Get PDF
    Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy

    Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties

    Get PDF
    BACKGROUND: Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further. METHODS: A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed. RESULTS: Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities. CONCLUSIONS: Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research

    Understanding tumor heterogeneity as functional compartments - superorganisms revisited

    Get PDF
    Compelling evidence broadens our understanding of tumors as highly heterogeneous populations derived from one common progenitor. In this review we portray various stages of tumorigenesis, tumor progression, self-seeding and metastasis in analogy to the superorganisms of insect societies to exemplify the highly complex architecture of a neoplasm as a system of functional "castes.

    Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research
    corecore