2,123 research outputs found

    The first four records of Slender-billed Gull Larus genei for Tanzania

    Get PDF
    No Abstract

    New Insights into Human Nondisjunction of Chromosome 21 in Oocytes

    Get PDF
    Nondisjunction of chromosome 21 is the leading cause of Down syndrome. Two risk factors for maternal nondisjunction of chromosome 21 are increased maternal age and altered recombination. In order to provide further insight on mechanisms underlying nondisjunction, we examined the association between these two well established risk factors for chromosome 21 nondisjunction. In our approach, short tandem repeat markers along chromosome 21 were genotyped in DNA collected from individuals with free trisomy 21 and their parents. This information was used to determine the origin of the nondisjunction error and the maternal recombination profile. We analyzed 615 maternal meiosis I and 253 maternal meiosis II cases stratified by maternal age. The examination of meiosis II errors, the first of its type, suggests that the presence of a single exchange within the pericentromeric region of 21q interacts with maternal age-related risk factors. This observation could be explained in two general ways: 1) a pericentromeric exchange initiates or exacerbates the susceptibility to maternal age risk factors or 2) a pericentromeric exchange protects the bivalent against age-related risk factors allowing proper segregation of homologues at meiosis I, but not segregation of sisters at meiosis II. In contrast, analysis of maternal meiosis I errors indicates that a single telomeric exchange imposes the same risk for nondisjunction, irrespective of the age of the oocyte. Our results emphasize the fact that human nondisjunction is a multifactorial trait that must be dissected into its component parts to identify specific associated risk factors

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Stressor- and Corticotropin releasing Factor-induced Reinstatement and Active Stress-related Behavioral Responses are Augmented Following Long-access Cocaine Self-administration by Rats

    Get PDF
    Rationale Stressful events during periods of drug abstinence likely contribute to relapse in cocaine-dependent individuals. Excessive cocaine use may increase susceptibility to stressor-induced relapse through alterations in brain corticotropin-releasing factor (CRF) responsiveness. Objectives This study examined stressor- and CRF-induced cocaine seeking and other stress-related behaviors in rats with different histories of cocaine self-administration (SA). Materials and methods Rats self-administered cocaine under short-access (ShA; 2 h daily) or long-access (LgA; 6 h daily) conditions for 14 days or were provided access to saline and were tested for reinstatement by a stressor (electric footshock), cocaine or an icv injection of CRF and for behavioral responsiveness on the elevated plus maze, in a novel environment and in the light–dark box after a 14- to 17-day extinction/withdrawal period. Results LgA rats showed escalating patterns of cocaine SA and were more susceptible to reinstatement by cocaine, EFS, or icv CRF than ShA rats. Overall, cocaine SA increased activity in the center field of a novel environment, on the open arms of the elevated plus maze, and in the light compartment of a light–dark box. In most cases, the effects of cocaine SA were dependent on the pattern/amount of cocaine intake with statistically significant differences from saline self-administering controls only observed in LgA rats. Conclusions When examined after several weeks of extinction/ withdrawal, cocaine SA promotes a more active pattern of behavior during times of stress that is associated with a heightened susceptibility to stressor-induced cocaine-seeking behavior and may be the consequence of augmented CRF regulation of addiction-related neurocircuitry

    Risks of nonchromosomal birth defects, small-for-gestational age birthweight, and prematurity with in vitro fertilization: effect of number of embryos transferred and plurality at conception versus at birth

    Get PDF
    PURPOSE: Excess embryos transferred (ET) (> plurality at birth) and fetal heartbeats (FHB) at 6 weeks' gestation are associated with reductions in birthweight and gestation, but prior studies have been limited by small sample sizes and limited IVF data. This analysis evaluated associations between excess ET, excess FHB, and adverse perinatal outcomes, including the risk of nonchromosomal birth defects. METHODS: Live births conceived via IVF from Massachusetts, New York, North Carolina, and Texas included 138,435 children born 2004-2013 (Texas), 2004-2016 (Massachusetts and North Carolina), and 2004-2017 (New York) were classified by ET and FHB. Major birth defects were reported by statewide registries within the first year of life. Logistic regression was used to estimate adjusted odds ratios (AORs) and 95% CIs of the risks of a major nonchromosomal birth defect, small-for-gestational age birthweight (SGA), low birthweight (LBW), and preterm birth (≤36 weeks), by excess ET, and excess ET + excess FHB, by plurality at birth (singletons and twins). RESULTS: In singletons with [2 ET, FHB =1] and [≥3 ET, FHB=1], risks [AOR (95% CI)] were increased, respectively, for major nonchromosomal birth defects [1.13 (1.00-1.27) and 1.18 (1.00-1.38)], SGA [1.10 (1.03-1.17) and 1.15 (1.05-1.26)], LBW [1.09 (1.02-1.13) and 1.17 (1.07-1.27)], and preterm birth [1.06 (1.00-1.12) and 1.14 (1.06-1.23)]. With excess ET + excess FHB, risks of all adverse outcomes except major nonchromosomal birth defects increased further for both singletons and twins. CONCLUSION: Excess embryos transferred are associated with increased risks for nonchromosomal birth defects, reduced birthweight, and prematurity in IVF-conceived births

    Split tendon transfers for the correction of spastic varus foot deformity: a case series study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overactivity of anterior and/or posterior tibial tendon may be a causative factor of spastic varus foot deformity. The prevalence of their dysfunction has been reported with not well defined results. Although gait analysis and dynamic electromyography provide useful information for the assessment of the patients, they are not available in every hospital. The purpose of the current study is to identify the causative muscle producing the deformity and apply the most suitable technique for its correction.</p> <p>Methods</p> <p>We retrospectively evaluated 48 consecutive ambulant patients (52 feet) with spastic paralysis due to cerebral palsy. The average age at the time of the operation was 12,4 yrs (9-18) and the mean follow-up 7,8 yrs (4-14). Eigtheen feet presented equinus hind foot deformity due to gastrocnemius and soleus shortening. According to the deformity, the feet were divided in two groups (Group I with forefoot and midfoot inversion and Group II with hindfoot varus). The deformities were flexible in all cases in both groups. Split anterior tibial tendon transfer (SPLATT) was performed in Group I (11 feet), while split posterior tibial tendon transfer (SPOTT) was performed in Group II (38 feet). In 3 feet both procedures were performed. Achilles tendon sliding lengthening (Hoke procedure) was done in 18 feet either preoperatively or concomitantly with the index procedure.</p> <p>Results</p> <p>The results in Group I, were rated according to Hoffer's clinical criteria as excellent in 8 feet and satisfactory in 3, while in Group II according to Kling's clinical criteria were rated as excellent in 20 feet, good in 14 and poor in 4. The feet with poor results presented residual varus deformity due to intraoperative technical errors.</p> <p>Conclusion</p> <p>Overactivity of the anterior tibial tendon produces inversion most prominent in the forefoot and midfoot and similarly overactivity of the posterior tibial tendon produces hindfoot varus. The deformity can be clinically unidentifiable in some cases when Achilles shortening co-exists producing foot equinus. By identifying the muscle causing the deformity and performing the appropriate technique, very satisfying results were achieved in the majority of our cases. In three feet both muscles contributed to a combined deformity and simultaneous SPLATT and SPOTT were considered necessary. For complex foot deformities where the component of cavus co-exists, supplementary procedures are required along with the index operation to obtain the best result.</p
    • …
    corecore