42 research outputs found

    Strengthening Visceral Leishmaniasis Diagnosis Capacity to Improve Access to Care in Kenya: The Example of Marsabit County

    Get PDF
    Background: Visceral leishmaniasis (VL), also known as kala-azar, is a neglected tropical disease (NTD) that is fatal if not treated early. The WHO targets the elimination of VL as a public health problem in its 2030 NTD road map. However, improving access to VL diagnosis and treatment remains a major challenge in many VL-endemic countries. Kenya is endemic for VL and is among the top 6 high-disease burden countries in the world. Methods: FIND, through its activities in improving the diagnosis of VL and supporting the elimination of the disease in Kenya, has worked with various county ministries of health (MOH) and central MOH over the last couple of years. FIND’s activities in Marsabit county started in 2018. In this work, we present the implementation of activities and the impacts in Marsabit county. We reviewed the data for 2017 and 2019 outbreaks (before and after the implementation of FIND’s activities) and assessed the importance of improving access and community sensitization to VL diagnosis. We assessed the contribution of each facility to the total distance traveled from a perspective of location optimization. Results: There was a sharp increase in the number of people tested in the 2017 outbreak compared to the 2019 outbreak. In 2017, 437 people were tested compared to 2,338 in 2019. The county reported 234 and 688 VL cases in 2017 and 2019, respectively. The data revealed a shift in the demographic structures of cases toward the younger population (mean age in 2017 was 17.6 years and 15.3 years in 2019), with more female cases reported in 2019 compared to 2017. In 2017, 44.4% were 10 years of age or under. In 2019, the proportion 10 years or below was 52.2%. The addition of two new diagnosis facilities in 2018 resulted in a decrease in the distance traveled by confirmed VL cases from 28.1 km in 2017 to 10.8 km in 2019. Assessing the impact of facility placement indicated the most optimal facilities to provide VL diagnostic services and minimize the distance traveled by patients. Adding new facilities reduces the travel distance until a point where the addition of a new facility provides no additional impact. Conclusion: The results from this study indicate the need to carefully consider the placement of health facilities in improving access to VL diagnosis and treatment and could serve as an investment case in deciding when to stop adding new facilities in a particular setting. Extending the activities in Kenya to other VL-endemic countries in East Africa will contribute significantly toward the elimination of the disease, addressing the needs of marginalized populations and leaving no one behind.Funding for the VL activities in Kenya presented in this paper was provided by the Swiss Agency for Development and Cooperation (SDC) and the Fundación Probitas.S

    HIV/AIDS-related non-Hodgkin’s lymphomas and confounders: preliminary report of the Sub-Saharan Africa Lymphoma Consortium (SSALC)

    Get PDF
    CITATION: Ayers, L.W. et al. 2012. HIV/AIDS-related non-Hodgkin’s lymphomas and confounders : preliminary report of the Sub-Saharan Africa Lymphoma Consortium (SSALC). Infectious Agents and Cancer, 7(Suppl 1):P11, doi:10.1186/1750-9378-7-S1-P11.The original publication is available at http://infectagentscancer.biomedcentral.comSSALC was established to characterize HIV/AIDS-related lymphoma and the indigenous background of malignant lymphomas (ML) in sub-Saharan Africa. Because WHO classified lymphoma subgroups can vary in prevalence African, Asian or European ancestry, we surveyed lymphoma heterogeneity in geographically diverse East, South and West sub-Saharan populations, particularly for HIV/AIDS associated immunophenotypes.http://infectagentscancer.biomedcentral.com/articles/10.1186/1750-9378-7-S1-P11Publisher's versio

    Developing Strategies for Onchocerciasis Elimination Mapping and Surveillance Through The Diagnostic Network Optimization Approach

    Get PDF
    Background Onchocerciasis (river blindness) is a filarial disease targeted for elimination of transmission. However, challenges exist to the implementation of effective diagnostic and surveillance strategies at various stages of elimination programs. To address these challenges, we used a network data analytics approach to identify optimal diagnostic scenarios for onchocerciasis elimination mapping (OEM). Methods The diagnostic network optimization (DNO) method was used to model the implementation of the old Ov16 rapid diagnostic test (RDT) and of new RDTs in development for OEM under different testing strategy scenarios with varying testing locations, test performance and disease prevalence. Environmental suitability scores (ESS) based on machine learning algorithms were developed to identify areas at risk of transmission and used to select sites for OEM in Bandundu region in the Democratic Republic of Congo (DRC) and Uige province in Angola. Test sensitivity and specificity ranges were obtained from the literature for the existing RDT, and from characteristics defined in the target product profile for the new RDTs. Sourcing and transportation policies were defined, and costing information was obtained from onchocerciasis programs. Various scenarios were created to test various state configurations. The actual demand scenarios represented the disease prevalence at IUs according to the ESS, while the counterfactual scenarios (conducted only in the DRC) are based on adapted prevalence estimates to generate prevalence close to the statistical decision thresholds (5% and 2%), to account for variability in field observations. The number of correctly classified implementation units (IUs) per scenario were estimated and key cost drivers were identified. Results In both Bandundu and Uige, the sites selected based on ESS had high predicted onchocerciasis prevalence >10%. Thus, in the actual demand scenarios in both Bandundu and Uige, the old Ov16 RDT correctly classified all 13 and 11 IUs, respectively, as requiring CDTi. In the counterfactual scenarios in Bandundu, the new RDTs with higher specificity correctly classified IUs more cost effectively. The new RDT with highest specificity (99.8%) correctly classified all 13 IUs. However, very high specificity (e.g., 99.8%) when coupled with imperfect sensitivity, can result in many false negative results (missing decisions to start MDA) at the 5% statistical decision threshold (the decision rule to start MDA). This effect can be negated by reducing the statistical decision threshold to 2%. Across all scenarios, the need for second stage sampling significantly drove program costs upwards. The best performing testing strategies with new RDTs were more expensive than testing with existing tests due to need for second stage sampling, but this was offset by the cost of incorrect classification of IUs. Conclusion The new RDTs modelled added most value in areas with variable disease prevalence, with most benefit in IUs that are near the statistical decision thresholds. Based on the evaluations in this study, DNO could be used to guide the development of new RDTs based on defined sensitivities and specificities. While test sensitivity is a minor driver of whether an IU is identified as positive, higher specificities are essential. Further, these models could be used to explore the development and optimization of new tools for other neglected tropical diseases

    Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness.

    Get PDF
    BACKGROUND: Sleeping sickness, or human African trypanosomiasis (HAT), is a protozoan disease that affects rural communities in sub-Saharan Africa. Determination of the disease stage, essential for correct treatment, represents a key issue in the management of patients. In the present study we evaluated the potential of CXCL10, CXCL13, ICAM-1, VCAM-1, MMP-9, B2MG, neopterin and IgM to complement current methods for staging Trypanosoma brucei gambiense patients. METHODS AND FINDINGS: Five hundred and twelve T. b. gambiense HAT patients originated from Angola, Chad and the Democratic Republic of the Congo (D.R.C.). Their classification as stage 2 (S2) was based on the number of white blood cells (WBC) (>5/”L) or presence of parasites in the cerebrospinal fluid (CSF). The CSF concentration of the eight markers was first measured on a training cohort encompassing 100 patients (44 S1 and 56 S2). IgM and neopterin were the best in discriminating between the two stages of disease with 86.4% and 84.1% specificity respectively, at 100% sensitivity. When a validation cohort (412 patients) was tested, neopterin (14.3 nmol/L) correctly classified 88% of S1 and S2 patients, confirming its high staging power. On this second cohort, neopterin also predicted both the presence of parasites, and of neurological signs, with the same ability as IgM and WBC, the current reference for staging. CONCLUSIONS: This study has demonstrated that neopterin is an excellent biomarker for staging T. b. gambiense HAT patients. A rapid diagnostic test for detecting this metabolite in CSF could help in more accurate stage determination

    Aflatoxin B1 levels in groundnut products from local markets in Zambia

    Get PDF
    In Zambia, groundnut products (milled groundnut powder, groundnut kernels) are mostly sold in under-regulated markets. Coupled with the lack of quality enforcement in such markets, consumers may be at risk to aflatoxin exposure. However, the level of aflatoxin contamination in these products is not known. Compared to groundnut kernels, milled groundnut powder obscures visual indicators of aflatoxin contamination in groundnuts such as moldiness, discoloration, insect damage or kernel damage. A survey was therefore conducted from 2012 to 2014, to estimate and compare aflatoxin levels in these products (n = 202), purchased from markets in important groundnut growing districts and in urban areas. Samples of whole groundnut kernels (n = 163) and milled groundnut powder (n = 39) were analysed for aflatoxin B1 (AFB1) by competitive enzyme-linked immunosorbent assay (cELISA). Results showed substantial AFB1 contamination levels in both types of groundnut products with maximum AFB1 levels of 11,100 ÎŒg/kg (groundnut kernels) and 3000 ÎŒg/kg (milled groundnut powder). However, paired t test analysis showed that AFB1 contamination levels in milled groundnut powder were not always significantly higher (P > 0.05) than those in groundnut kernels. Even for products from the same vendor, AFB1 levels were not consistently higher in milled groundnut powder than in whole groundnut kernels. This suggests that vendors do not systematically sort out whole groundnut kernels of visually poor quality for milling. However, the overall contamination levels of groundnut products with AFB1 were found to be alarmingly high in all years and locations. Therefore, solutions are needed to reduce aflatoxin levels in such under-regulated markets

    Afri-Can Forum 2

    Full text link

    Serological tests for gambiense human African trypanosomiasis detect antibodies in cattle

    No full text
    Abstract Background Serological tests for gambiense human African trypanosomiasis (gHAT) detect antibodies to antigens on the cell surface of bloodstream trypanosomes. As trypanosomes that cause animal African trypanosomiasis (AAT) also express related antigens, we have evaluated two rapid diagnostic tests (RDTs) on cattle in trypanosomiasis endemic and non-endemic regions, to determine whether gHAT serological tests could also be used to screen for AAT. Methods Two RDTs, 1G RDT, made with native antigens, and p2G RDT, made with recombinant antigens, were tested on 121 cattle in a trypanosomiasis-free region, and on 312 cattle from a rhodesiense HAT and AAT endemic region. A subset of samples from the endemic region were also tested with two immune trypanolysis (TL) tests. The sensitivity of the tests was estimated by evaluating the result of the RDT on samples that were positive by both microscopy and internal transcribed spacer (ITS) PCR, whilst specificity was the result of the RDT on samples that were negative by ITS PCR and microscopy, and others from the non-endemic region. Results The specificity of the p2G RDT on cattle from the non-endemic region was 97.5% (95% CI: 93.0–99.2%), compared to only 57.9% (95% CI: 48.9–66.3%) for 1G RDT. The specificities of 1G RDT, p2G RDT and TL on endemic control cattle were 14.6% (95% CI: 9.7–21.5%), 22.6% (95% CI: 16.4–30.3%) and 68.3% (95% CI: 59.6–75.9%), respectively. The sensitivities of the tests on trypanosome positive samples were 85.1% (95% CI: 79.1–89.7%), 89.1% (95% CI: 83.7–93.0%) and 59.3% (95% CI: 51.8–66.4%), respectively. Among the same samples, 51.7% were positive by both TL and the 1G RDT. Conclusions These serological tests detect cross-reacting antibodies in cattle. The p2G RDT based on recombinant antigens had a high specificity in a non-endemic region, while the 1G RDT had a lower specificity, suggesting cross-reactivity with other pathogens
    corecore