2,606 research outputs found

    LNK (SH2B3): paradoxical effects in ovarian cancer.

    Get PDF
    LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it downregulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high-grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. Liquid chromatography-mass spectroscopy identified 14-3-3 as one of the LNK-binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers

    GDPR-Compliant Personal Data Management: A Blockchain-based Solution

    Get PDF
    The General Data Protection Regulation (GDPR) gives control of personal data back to the owners by appointing higher requirements and obligations on service providers who manage and process personal data. As the verification of GDPR-compliance, handled by a supervisory authority, is irregularly conducted; it is challenging to be certified that a service provider has been continuously adhering to the GDPR. Furthermore, it is beyond the data owner’s capability to perceive whether a service provider complies with the GDPR and effectively protects her personal data. This motivates us to envision a design concept for developing a GDPR-compliant personal data management platform leveraging the emerging blockchain and smart con-tract technologies. The goals of the platform are to provide decentralised mechanisms to both service providers and data owners for processing personal data; meanwhile, empower data provenance and transparency by leveraging advanced features of the blockchain technology. The platform enables data owners to impose data usage consent, ensures only designated parties can process personal data, and logs all data activities in an immutable distributed ledger using smart contract and cryptography techniques. By honestly participating in the platform, a service provider can be endorsed by the blockchain network that it is fully GDPR-compliant; otherwise, any violation is immutably recorded and is easily figured out by associated parties. We then demonstrate the feasibility and efficiency of the proposed design concept by developing a profile management platform implemented on top of the Hyperledger Fabric permissioned blockchain framework, following by valuable analysis and discussion

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Research on an online self-organizing radial basis function neural network

    Get PDF
    A new growing and pruning algorithm is proposed for radial basis function (RBF) neural network structure design in this paper, which is named as self-organizing RBF (SORBF). The structure of the RBF neural network is introduced in this paper first, and then the growing and pruning algorithm is used to design the structure of the RBF neural network automatically. The growing and pruning approach is based on the radius of the receptive field of the RBF nodes. Meanwhile, the parameters adjusting algorithms are proposed for the whole RBF neural network. The performance of the proposed method is evaluated through functions approximation and dynamic system identification. Then, the method is used to capture the biochemical oxygen demand (BOD) concentration in a wastewater treatment system. Experimental results show that the proposed method is efficient for network structure optimization, and it achieves better performance than some of the existing algorithms

    Fuzzy Free Path Detection from Disparity Maps by Using Least-Squares Fitting to a Plane

    Full text link
    A method to detect obstacle-free paths in real-time which works as part of a cognitive navigation aid system for visually impaired people is proposed. It is based on the analysis of disparity maps obtained from a stereo vision system which is carried by the blind user. The presented detection method consists of a fuzzy logic system that assigns a certainty to be part of a free path to each group of pixels, depending on the parameters of a planar-model fitting. We also present experimental results on different real outdoor scenarios showing that our method is the most reliable in the sense that it minimizes the false positives rate.N. Ortigosa acknowledges the support of Universidad Politecnica de Valencia under grant FPI-UPV 2008 and Spanish Ministry of Science and Innovation under grant MTM2010-15200. S. Morillas acknowledges the support of Universidad Politecnica de Valencia under grant PAID-05-12-SP20120696.Ortigosa Araque, N.; Morillas Gómez, S. (2014). Fuzzy Free Path Detection from Disparity Maps by Using Least-Squares Fitting to a Plane. Journal of Intelligent and Robotic Systems. 75(2):313-330. https://doi.org/10.1007/s10846-013-9997-1S313330752Cai, L., He, L., Xu, Y., Zhao, Y., Yang, X.: Multi-object detection and tracking by stereovision. Pattern Recognit. 43(12), 4028–4041 (2010)Hikosaka, N., Watanabe, K., Umeda, K.: Obstacle detection of a humanoid on a plane using a relative disparity map obtained by a small range image sensor. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 3048–3053 (2007)Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Fast stixel computation for fast pedestrian detection. In: ECCV, CVVT workshop, October (2012)Huang, Y., Fu, S., Thompson, C.: Stereovision-based object segmentation for automotive applications. EURASIP J. Appl. Signal Process. 2005(14), 2322–2329 (2005)Duan, B.B., Liu, W., Fu, P.Y., Yang, C.Y., Wen, X.Z., Yuan, H.: Real-time on-road vehicle and motorcycle detection using a single camera. In: IEEE International Conference on Industrial Technology, pp. 579–584. IEEE (2009)Oliveira L, Nunes, U.: On integration of features and classifiers for robust vehicle detection. In: IEEE International Conference on Intelligent Transportation Systems, pp. 414–419. IEEE (2008)Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 694–711 (2006)Sun, H.J., Yang, J.Y.: Obstacle detection for mobile vehicle using neural network and fuzzy logic. Neural Netw. Distrib. Process. 4555(1), 99–104 (2001)Hui, N.B., Pratihar, D.K.: Soft computing-based navigation schemes for a real wheeled robot moving among static obstacles. J. Intell. Robot. Syst. 51(3), 333–368 (2008)Menon, A., Akmeliawati, R., Demidenko, S.: Towards a simple mobile robot with obstacle avoidance and target seeking capabilities using fuzzy logic. In: Proceedings IEEE Instrumentation and Measurement Technology Conference, vol. 1–5, pp. 1003–1008 (2008)Moreno-Garcia, J., Rodriguez-Benitez, L., Fernandez-Caballero, A., Lopez, M.T.: Video sequence motion tracking by fuzzification techniques. Appl. Soft Comput. 10(1), 318–331 (2010)Nguyen, T.H., Nguyen, J.S., Pham, D.M., Nguyen, H.T.: Real-time obstacle detection for an autonomous wheelchair using stereoscopic cameras. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007(1), 4775–4778 (2007)Nguyen, J.S., Nguyen, T.H., Nguyen, H.T.: Semi-autonomous wheelchair system using stereoscopic cameras. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1–20, pp. 5068–5071 (2009)Grosso, E., Tistarelli, M.: Active/dynamic stereo vision. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 868–879 (1995)Kubota, S., Nakano, T., Okamoto, Y.: A global optimization for real-time on-board stereo obstacle detection systems. In: IEEE Intelligent Vehicles Symposium, pp. 7–12. IEEE (2007)Ortigosa, N., Morillas, S., Peris-Fajarnés, G., Dunai, L.: Fuzzy free path detection based on dense disparity maps obtained from stereo cameras. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 20(2), 245–259 (2012)Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robot. 8(2), 161–171 (2000)Badino, H., Mester, R., Vaudrey, T., Franke, U.: Stereo-based free space computation in complex traffic scenarios. In: IEEE Southwest Symposium on Image Analysis & Interpretation, pp. 189–192 (2008)Hoilund, C., Moeslund, T.B., Madsen, C.L., Trivedi, M.M.: Free space computation from stochastic occupancy grids based on iconic kalman filtered disparity maps. In: Proceedings International Conference on Computer Vision Theory and Applications, vol. 1, pp. 164–167 (2010)Franke, U., Joos, A.: Real-time stereo vision for urban traffic scene understanding. In: IEEE Intelligent Vehicles Symposium, pp. 273–278. IEEE (2000)Wedel, A., Badino, H., Rabe, C., Loose, H., Franke, U., Cremers, D.: B-spline modeling of road surfaces with an application to free-space estimation. IEEE Trans. Intell. Transp. Syst. 10(4), 572–583 (2009)Vergauwen, M., Pollefeys, M., Van Gool, L.: A stereo-vision system for support of planetary surface exploration. Mach. Vis. Appl. 14(1), 5–14 (2003)Tarel, J.P., Leng, S.S., Charbonnier, P.: Accurate and robust image alignment for road profile reconstruction. In: IEEE International Conference on Image Processing, pp. 365–368. IEEE (2007)Kostavelis, I., Gasteratos, A.: Stereovision-based algorithm for obstacle avoidance. In: Lecture Notes in Computer Science, pp. 195–204. Intelligent Robotics and Applications (2009)Cerri, P., Grisleri, P.: Free space detection on highways using time correlation between stabilized sub-pixel precision ipm images. In: IEEE International Conference on Robotics and Automation, pp. 2223–2228. IEEE (2005)Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereo vision on non-flat road geometry through v-disparity representation. In: IEEE Intelligent Vehicle Symposium, pp. 646–651. INRIA (2002)Ortigosa, N., Morillas, S., Peris-Fajarnés, G., Dunai, L.: Disparity maps for free path detection. In: Proceedings International Conference on Computer Vision Theory and Applications, vol. 1, pp. 310–315 (2010)Ortigosa, N., Morillas, S., Peris-Fajarnés, G.: Obstacle-free pathway detection by means of depth maps. J. Intell. Robot. Syst. 63(1), 115–129 (2011)http://www.casblip.comBach y Rita, P., Collins, C., Sauders, B., White, B., Scadden, L.: Vision substitution by tactile image projection. Nature 221, 963964 (1969)Sampaio, E., Maris, S., Bach y Rita, P.: Brain plasticity: visual acuity of blind persons via the tongue. Brain Res. 908, 204207 (2001)http://www.seeingwithsound.comCapelle, C., Trullemans, C., Arno, P., Veraart, C.: A real-time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Trans. Biomed. Eng. 45, 12791293 (1998)Lee, S.W., Kang, S.K., Lee, S.A.: A walking guidance system for the visually impaired. Int. J. Pattern Recognit. 22, 11711186 (2008)Chen, C.L., Liao, Y.F., Tai, C.L.: Image-to-midi mapping based on dynamic fuzzy color segmentation for visually impaired people. Pattern Recognit. Lett. 32, 549–560 (2011)Lombardi, P., Zanin, M., Messelodi, S.: Unified stereovision for ground, road, and obstacle detection. In: Proceedings on the Intelligent Vehicles Symposium, 2005, pp. 783–788. IEEE (2005)Yu, Q., Araujo, H., Wang, H.: Stereo-vision based real time obstacle detection for urban environments. In: Proceedings on the International Conference of Advanced Robotics, vol. 1, pp. 1671–1676 (2003)Benenson, R., Timofte, R., Van Gool, L.: Stixels estimation without depth map computation. In: ICCV, CVVT workshop (2011)Li, X., Yao, X., Murphey, Y.L., Karlsen, R., Gerhart, G.: A real-time vehicle detection and tracking system in outdoor traffic scenes. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, vol. 2, pp. 761–764 (2004)Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)Dhond, U.R., Aggarwal, J.K.: Structure from stereo: a review. IEEE Trans. Syst. Man Cybern. 19, 1489–1510 (1989)Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), 7–42 (2002)Middlebury Stereo Vision Page. http://vision.middlebury.edu/stereo/Birchfield, S., Tomasi, C.: Depth discontinuities by pixel-to-pixel stereo. Int. J. Comput. Vis. 17(3), 269–293 (1999)Lawrence Zitnick, C., Bing Kang, S.: Stereo for image-based rendering using image over-segmentation. Int. J. Comput. Vis. 75(1), 49–65 (2007)Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. 70(1), 41–54 (2006)Yang, Q., Wang, L., Yang, R., Stewnius, H., Nistr, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 492–504 (2009)Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. Lect. Notes Comput. Sci. 5815/2009, 134–143 (2009)Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3d motion understanding. Int. J. Comput. Vis. 95, 29–51 (2011)Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)Leung, C., Appleton, B., Sun, C.: Iterated dynamic programming and quadtree subregioning for fast stereo matching. Image Vis. Comput. 26(10), 1371–1383 (2008)Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, ISBN: 0521540518 (2004)Spiegel, M.R., Stepthens, L.J.: Statistics, 4th edn. Mc Graw Hill (2008)Kerre, E.E.: Fuzzy sets and approximate reasoning. Xian Jiaotong University Press (1998)Dubois, D., Prade, H.: Fuzzy sets and systems: theory and applications. Academic Press, New York (1980)Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller-parts 1 and 2. IEEE Trans. Syst. Man Cybern. 20(2), 404–435 (1990)Fodor, J.C.: A new look at fuzzy-connectives. Fuzzy Sets Syst. 57(2), 141–148 (1993)Nalpantidis, L., Gasteratos, A.: Stereo vision for robotic applications in the presence of non-ideal lightning conditions. Image Vis. Comput. 28(6), 940–951 (2010

    Measurement of Exclusive B Decays to Final States Containing a Charmed Baryon

    Get PDF
    Using data collected by the CLEO detector in the Upsilon(4S) region, we report new measurements of the exclusive decays of B mesons into final states of the type Lambda_c^+ p-bar n(pi), where n=0,1,2,3. We find signals in modes with one, two and three pions and an upper limit for the two body decay Lambda_c^+ pbar. We also make the first measurements of exclusive decays of B mesons to Sigma_c p-bar n(pi), where n=0,1,2. We find signals in modes with one and two pions and an upper limit for the two body decay Sigma_c p-bar. Measurements of these modes shed light on the mechanisms involved in B decays to baryons.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons

    Full text link
    Using data recorded by the CLEO II and CLEO II.V detector configurations at CESR, we report new measurements of the masses of the Sigma_c^{++} and Sigma_c^0 charmed baryons, and the first measurements of their intrinsic widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) = 167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communications. Reference [13] correcte

    Evidence for the Decay D0K+ππ+πD^0\to K^+ \pi^-\pi^+\pi^-

    Full text link
    We present a search for the ``wrong-sign'' decay D0 -> K+ pi- pi+ pi- using 9 fb-1 of e+e- collisions on and just below the Upsilon(4S) resonance. This decay can occur either through a doubly Cabibbo-suppressed process or through mixing to a D0bar followed by a Cabibbo-favored process. Our result for the time-integrated wrong-sign rate relative to the decay D0 -> K- pi+ pi- pi+ is (0.0041 +0.0012-0.0011(stat.) +-0.0004(syst.))x(1.07 +-0.10)(phase space), which has a statistical significance of 3.9 standard deviations.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Hadronic Mass Moments in Inclusive Semileptonic B Meson Decays

    Full text link
    We have measured the first and second moments of the hadronic mass-squared distribution in B -> X_c l nu, for P(lepton) > 1.5 GeV/c. We find <M_X^2 - M_D[Bar]^2> = 0.251 +- 0.066 GeV^2, )^2 > = 0.576 +- 0.170 GeV^4, where M_D[Bar] is the spin-averaged D meson mass. From that first moment and the first moment of the photon energy spectrum in b -> s gamma, we find the HQET parameter lambda_1 (MS[Bar], to order 1/M^3 and beta_0 alpha_s^2) to be -0.24 +- 0.11 GeV^2. Using these first moments and the B semileptonic width, and assuming parton-hadron duality, we obtain |V_cb| = 0.0404 +- 0.0013.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR
    corecore