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GDPR-Compliant Personal Data Management: A
Blockchain-based Solution

Nguyen Binh Truong, Member, IEEE, Kai Sun, Senior Member, IEEE, Gyu Myoung Lee, Senior Member, IEEE,
and Yike Guo, Fellow, IEEE

Abstract— The General Data Protection Regulation (GDPR)
gives control of personal data back to the owners by appointing
higher requirements and obligations on service providers who
manage and process personal data. As the verification of GDPR-
compliance, handled by a supervisory authority, is irregularly
conducted; it is challenging to be certified that a service provider
has been continuously adhering to the GDPR. Furthermore, it is
beyond the data owner’s capability to perceive whether a service
provider complies with the GDPR and effectively protects her
personal data. This motivates us to envision a design concept
for developing a GDPR-compliant personal data management
platform leveraging the emerging blockchain and smart con-
tract technologies. The goals of the platform are to provide
decentralised mechanisms to both service providers and data
owners for processing personal data; meanwhile, empower data
provenance and transparency by leveraging advanced features
of the blockchain technology. The platform enables data owners
to impose data usage consent, ensures only designated parties
can process personal data, and logs all data activities in an
immutable distributed ledger using smart contract and cryp-
tography techniques. By honestly participating in the platform, a
service provider can be endorsed by the blockchain network that
it is fully GDPR-compliant; otherwise, any violation is immutably
recorded and is easily figured out by associated parties. We
then demonstrate the feasibility and efficiency of the proposed
design concept by developing a profile management platform
implemented on top of the Hyperledger Fabric permissioned
blockchain framework, following by valuable analysis and dis-
cussion.

Index Terms—Blockchain, Data Management, GDPR, Personal
Data, Smart Contract.

I. INTRODUCTION

THE General Data Protection Regulation (GDPR) legis-
lation came into force in May 2018 in all European

Union (EU) countries. The GDPR is a major update to the
data privacy regulations released in 1995, which is before the
proliferation of cloud platforms and social media, let alone the
scale of today’s data usage. The provision of the GDPR is to
ensure that personal data “can only be gathered legally, under
strict conditions, for a legitimate purpose”; as well as to bring
full control back to the data owners1.

As the GDPR requirements are highly abstract, it is open
to interpretation. In fact, each organisation has its own way
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to satisfy the new regulations; and to demonstrate the com-
pliance. Supposedly, each EU member state provides a su-
pervisory authority who is responsible for monitoring the
GDPR-compliance. Organisations are required to demonstrate
compliance only in case of suspicion of a violation or when
a Data Subject (i.e., the owner of data, denoted as DS)
lodges a complaint with the supervisory authority. In this
regard, the challenge of complying with the GDPR is not
because of lacking technical solutions for tackling down the
GDPR requirements nor providing required mechanisms; it is
because such solutions are designed and implemented under
a centralised client-server architecture mindset. Due to the
irregular verification of GDPR compliance, critical concerns
on the lack of transparency have been imposed accordingly.
In particular, it is unachievable for a Service Provider (SP)
to prove that it has been continuously adhering to the GDPR
using existing centralised solutions. Moreover, it is beyond
the DS’s capability to perceive whether an SP fully complies
with the GDPR and effectively protects her data. For these
reasons, GDPR-compliant personal data management is a well-
suited scenario for the emerging blockchain technology (BC)
to come into play. A BC platform implementing Smart Con-
tracts (SCs) is expected to be a promising measure for these
challenges thanks to its advanced features of decentralisation,
transparency, tamper-resistance, and traceability.

Some research articles have stated potentials of the BC as a
general-purpose data management and storage [1]–[11]; how-
ever, they only provided preliminary methodological explo-
ration or conceptual models without detailed technical analysis
and implementation. In these articles, a holistic architecture of
decoupling the BC, which is for accounting and auditing data
access, from a storage layer, which physically stores data were
adopted. Unfortunately, there are lacking of a comprehensive
design concept and technical mechanisms to actualise the
capability of the BC in personal data management and in com-
plying with the GDPR requirements. In this article, we propose
a design concept with technical mechanisms for a BC-based
GDPR-compliant personal data management platform, along
with a detailed implementation of the profile management
system use-case built on top of a permissioned BC framework.
The goal of the design concept is to preserve advanced features
of BC and SCs in personal data management by leveraging
distributed ledger and public-key cryptography technologies
for complying with the manifold legal requirements of the
GDPR [12]. For this purpose, a BC network is designed
to play as the roles of: (i) a delegated authentication and
authorisation server which is consolidated by a novel concept
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of decentralised access token, (ii) an automated access control
manager, and (iii) an immutable logging system a for parties
who desire to access personal data stored in an off-chain
Resource Server (RS).

By following the proposed design concept, a personal data
management platform ensures that only designated DSs and
Data Controllers (DCs) are permitted to create, update and
withdraw consents; and only authorised Data Processors (DPs)
can process personal data respecting rules defined in corre-
sponding data usage policy agreed between the DSs and the
DPs. The platform not only provides mechanisms for DS rights
but also plays as a role of a DC for handling personal data
processing and demonstrating data accountability. By honestly
participating in the BC-based personal data management plat-
form, an SP can be endorsed by the BC network that it is
GDPR-compliant. Otherwise any violations are recorded in an
immutable distributed ledger as a record of the infringements,
which can be then used for the GDPR compliance investigation
by supervisory authorities.

We demonstrate the feasibility and effectiveness of the
proposed design concept by developing a system for managing
personal profiles. The system, which is built on top of the
Hyperledger Fabric (HLF) permissioned BC framework2 and
cooperates with an honest RS for data storage, plays as a
profile management service for a social networking SP. This
system provides clients’ rights as well as facilitates the social
networking SP’s obligations, following by analysis and dis-
cussion on the GDPR-compliance, threat models and system
performance. It is affirmed that the social networking SP is
fully compliant with the GDPR requirements. We believe the
proposed approach is a promising solution not only for GDPR-
compliant personal data management but also for digital assets
governance.

The rest of the article is organised as follows. Section II
presents background and related work. Section III describes
challenges and motivation. The design concept is proposed
in Section IV following by the implementation of the profile
management platform in Section V. Section VI provides the
analysis and discussion about the platform. The last section
concludes our work and outlines future research.

II. BACKGROUND AND RELATED WORK

In this section, relevant background knowledge on GDPR
and BC and related work are presented. Table I depicts some
of the notions frequently used throughout this article.

A. The GDPR in a Nutshell

The full GDPR are described in detail across 99 articles
covering all of the technical and admin principles around how
commercial and public organisations process personal data
[13]. GDPR lays out the means by which personal data is
to be protected which are founded on a set of six core data
processing principles: Lawfulness, Fairness, and Transparency;
Purpose Limitation; Data Minimisation; Accuracy; Storage
Limitation; Integrity and Confidentiality3. To preserve such

2https://www.hyperledger.org/projects/fabric
3https://gdpr-info.eu/art-5-gdpr/

Table I: NOTATION TABLE WITH ENTRIES IN ALPHABETICAL ORDER

Notation Description

API Application Programming Interface
BC Blockchain

BFT Byzantine Fault Tolerance
C-ID Complex Identity
CA Certificate Authority

CRUD Create-Read-Update-Delete operations
DBMS Database Management System

DC Data Controller
DP Data Processor
DS Data Subject

GDPR General Data Protection Regulations
HLF Hyperledger Fabric Blockchain framework
IdM Identity Management
MSP Membership Service Provider
OSN Ordering Service Node
RS Resource Server
SC Smart Contract
SP Service Provider
TP Third-Party

principles, the GDPR clearly differentiates three roles (i.e.,
DS, DC and DP) and explicitly specifies associated rights and
obligations under the EU data protection law. The goal of the
GDPR legislation is to provide a DS full control over her
personal data by specifying a variety of rights. The GDPR
requires that personal data should be managed by a DC that
assures the rights of the DS [13]. Such mechanisms enable
the DS to impose consents and to arbitrarily withdraw the
consents whenever needed. The DS is also able to trace back
all activities on her data including who, what, why, when, and
how the data is processed. Valid legal consents must be given
by the DS to the DC for processing her personal data. The
DC then takes appropriate measures to provide the rights of
the DS; meanwhile determines the purposes for which and the
method in which, the personal data is processed by DPs [14].

Being compliant with the GDPR is not enough, DCs should
also be able to demonstrate the compliance to supervisory
authorities once required (when a supervisory authority has
suspicion of a violation or when a DS lodges a complaint
with the supervisory authority). In this case, the supervisory
authority shall establish and make public a list of processing
operations subjected to Data Protection Impact Assessment
and the Privacy Impact Assessment requirements4; then file a
report of infringements if it is the case.

B. Blockchain Technology

The BC technology, indeed, is a set of diversified tech-
niques including distributed systems, computer networks,
databases, and cryptography playing as the role of a distributed
ledger. The BC technology maintains a distributed immutable
database constituted from a continuous growing list of blocks
so-called a BC which records all transactions between entities
in a network. In our article, the acronym BC either refers
to the technology or a specific chain-of-block database. By
nature, a BC is inherently resistant to data modification. Once
recorded, information in any given block cannot be altered
retroactively as this would invalidate all hashes in the previous

4https://gdpr-info.eu/issues/privacy-impact-assessment/
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blocks in a BC; and break the consensus among nodes in the
network. The concept of BC was introduced in Bitcoin in 2008
[15]. Bitcoin is the first cryptocurrency that not only transacts
digital currency in a secure manner but also resolves the long-
standing problem of “double-spend” without the need for a
trusted third-party. BC underpins Bitcoin, but BC is not only
Bitcoin. Its usage goes far beyond [16]–[18].

In a BC network, a consensus protocol needs to be imple-
mented to ensure any disruptive action from an adversary will
be negated by a majority of participants [2]. The protocol is to
decide which player among the participants in the BC network
has permission to append a new block; other participants
are able to verify the permission and update their local
ledgers accordingly; which establishes consensus over the
network [19], [20]. Proof of Work (PoW) is the most common
consensus model used in public BCs. Unfortunately, PoW
is computation-intensive, as it requires powerful nodes (i.e.,
miners) dedicate to solve a computationally intensive puzzle
(i.e., mining), in order to produce a new block to the chain
[21]. To overcome latency and throughput bottlenecks of PoW,
alternative consensus models have been proposed, including
Proof of Stake (PoS) [22], [23], Byzantine fault-tolerant (BFT)
variants [24], Proof of Elapsed Time (PoET)5, and Algorand
[25]. Nonetheless, such consensus protocols depend on several
assumptions and impose their own disadvantages which results
in limited usage in the real-world compared to the PoW-variant
mechanisms [20].

C. Smart Contracts

An SC is a computer program deployed onto a BC network.
It automatically executes “actions” when necessary “condi-
tions” are met, specifying business logic of a service that
participants have agreed to [26]. As a mutual agreement, the
content of the SC is accessible to all participants [27]. An SC is
a form of decentralised automation that facilitates, verifies, and
enforces an agreement in a transaction and records the results
(i.e., state changes) into a ledger. All BC frameworks have
built-in mechanisms for executing SCs from a simple stack-
based scripting system (e.g., Bitcoin) to a Turing-complete
system (e.g., Ethereum and Hyperledger). Ethereum is among
the first BCs offering Turing-completeness. Its SCs are written
in either Solidity, Serpent or LLC, before being compiled
to bytecodes and executed in an Ethereum Virtual Machine
(EVM) [28]. The EVM keeps track of resources consumed by
the execution (i.e., gas) and charges to the sender’s account
as an incentive for miners. Hyperledger does not have its
bytecode for SCs. Instead, its SCs are language-agnostic
programs which are then compiled into native code, packed,
installed and executed inside Docker containers [29]. As a
result, this language-agnostic design supports multiple high-
level programming languages such as Go and JavaScript [30].

D. Related Work

Besides cryptocurrencies, the use of BC in other areas
has been intensively carried out over the last few years.

5https://sawtooth.hyperledger.org/docs/core/releases/latest/index.html

Specifically, prominent features of BC such as immutability,
traceability, transparency, and pseudo-anonymity can be pre-
served for a wide range of decentralised applications (DApps),
especially for managing and accounting digital assets. For
instance, several projects have utilised BC in supply-chain
and logistics to provide provenance tracking mechanisms for
products leveraging its immutability and traceability features
[31]–[33]. The immutability and transparency features have
also been utilised in a cloud data provenance platform called
ProvChain [34] in which all data operation history was trans-
parently and permanently recorded into a BC.

Furthermore, SCs deployed in a BC framework provide
autonomous functionalities executed in a decentralised manner
for a wide range of domain services. Blockstack [35] took
advantage of BC for managing domain names to replace the
traditional centralised Domain Name System. This work intro-
duced pivotal functionalities including identity and discovery
mechanisms deployed on top of the Namecoin platform [36]
and integrated with an off-chain storage service. In Blockstack,
domain name registration and modification operations were
implemented in BC whereas payload and digital signatures
were stored in a Kademlia6 Distributed Hash Table (DHT),
which was connected to a virtual-chain that separated off-
chain storage and BC operations. Only hashes of “name-
data” tuples and state transitions were recorded on-chain.
This design of decoupling the storage layer from the BC
has paved the way to other studies, particularly in large-scale
Internet of Things (IoT) data management [1], [2]. In these
studies, data generated from IoT devices were stored in a
DHT system and only keys of the data were recorded onto
a BC. DHT nodes, responsible for managing IoT data, are
required to join the BC network and listen to transactions
for sending/retrieving data to/from legitimate IoT devices.
BigchainDB [37] further provided a mechanism to balance
between on-chain and off-chain storage to achieve advanced
features from both BC and distributed databases by using
Tendermint7, a weak synchronisation BC engine built on a
BFT consensus.

Besides general-purpose data storage, BC-based accounting
and management mechanisms (e.g., IdM, authorisation, access
and permissions control) have also been proposed in a variety
of scenarios. Lee proposed a BC-based cloud ID service for
IdM [38], which used public-key cryptography for pseudo-
identity and a distributed ledger for recording public keys.
This study introduced a concept of mutual authentication by
combining signatures from a client and an SP for granting
access to a service. A fast security authentication scheme based
on permissioned BC was proposed by Chen et al. in a 5G
ultra-dense network [39] by using an optimised Practical BFT
(PBFT) consensus protocol called APG-PBFT. APG-PBFT
propagated authentication results embedded in BC among a
group of access points, resulting in reducing the authentication
frequency. In [40], a distributed access control in the IoT was
proposed, with operations embedded in an SC on a public
BC (i.e., Ethereum). However, most of these studies only

6https://en.wikipedia.org/wiki/Kademlia
7https://tendermint.com
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presented high-level system design, without technical details to
demonstrate the feasibility of their proposed solutions. Some
platforms (e.g., [40]) relied on a set of management nodes to
play as a hub for access control, which in fact turns into the
scenario of centralised management.

A few studies in the literature concerning BC-based personal
data management, particularly in supporting SPs to comply
with the new GDPR legislation. In [3], Wang et al. proposed
a fine-grained access control scheme deployed in the Ethereum
framework, for personal files stored in a distributed file system
called Interplanetary File System (IPFS) [4]. It customised
an attributed-based encryption scheme, but the dependency of
a centralised trusted private key generator is eliminated by
leveraging BC. The main limitation of this system is data
owners were responsible for all required tasks, from secret
key generation, file encryption, to the establishment of a
secure channel for communicating with another party. The
Ethereum framework was just used as a medium to execute
SCs in which crypto-artifacts were embedded for identity au-
thentication. Zyskind and Nathan [5] proposed another access
control scheme for a privacy-preserving personal data sharing
platform, taking advantage of immutability and public-key
cryptography in BC for identity verification and authorisation
mechanisms. Similar ideas were proposed for Electronic Heath
Records (EHRs) access control using Ethereum [6], [7] or
a permissioned BC [8]. In these works, EHRs were stored
off-chain in secure data custodians whereas access control
was carried out on a BC using a digital signature scheme.
Neisse et al. [9] proposed a BC-based approach for data
accountability, resulting in GDPR-compliance. They discussed
different design choices respecting who create and manage
data usage SCs. Similar ideas can be found in [10], [11].
However, in these studies, only the conceptual approach was
presented; technical details on platform development were
missed out. The challenges including ledger data models and
functionalities in SCs have not been addressed.

III. PERSONAL DATA MANAGEMENT: SCENARIOS AND
CHALLENGES

In this section, we provide an overview of the scenarios and
the current solution approach on personal data management
which leverages a delegated authentication and authorisation
server following the OAuth standardisation [41] (illustrated in
Fig. 1). This solution approach is designed under a centralised
client-server mindset that imposes unsolvable challenges in
complying with the new GDPR requirements and in establish-
ing trust with clients [14].

A. Scenarios

We consider real-world scenarios in which clients allow an
SP to collect, manage, process, and (possibly) shares their
personal data in exchange for a service. These scenarios
specify three roles as follows:

• End-user: a client of a service who owns personal data.
The end-user allows the SP to collect its data once using
the service. In the GDPR terminology, an end-user is a
DS.

• Service Provider (SP): an entity that directly collects and
manages personal data for its operational and business-
related purposes. An SP stores personal data in an RS,
which is either a system run by the SP or an independent
service. An SP may share collected data with third parties
for its benefits. In the context of GDPR, an SP plays both
roles of a DC (when the SP shares personal data with a
third-party) and a dDP (when the SP processes personal
data for its own business).

• Third-party (TP): an entity that provides a service to end-
users but has to rely on the SP’ infrastructure to develop
the service and to acquire desired personal data. In the
GDPR terminology, a TP is a DP.

As illustrated in Fig. 1, the procedure of granting data access
for an SP and a TP is in four steps:

1) A user starts to use a service provided by an SP. The SP
asks the user for permission to collect her personal data.

2) The end-user grants a set of permissions to the SP for
personal data collection and processing.

3) The TP asks the end-user to access her personal data
which is collected and managed by the SP.

4) End-user logs into the service provided by the SP and
consents a set of permissions to the TP

Once the permission is granted, the data access procedure
is in the fifth and sixth steps in Fig. 1:

5) The SP authenticates and authorises the TP for accessing
the data and provides an access token to the TP.

6) The TP then calls associated APIs using the provided
token in step-5 to obtain the desired data.

B. Challenges

To meet the new GDPR requirements, conventional solu-
tions on personal data management provide additional mea-
sures such as offering end-users mechanisms to fully control
their data. Nevertheless, these measures are based on the
client-server architecture which provide limited transparency
and are lack of trust. For instance, a majority of SPs follow the
OAuth28 standard for access delegation, which includes IdM,
authentication, authorisation, and access control mechanisms
that allows end-users to share their personal data with single
sign-on in a simplified and secure manner [41]. However, the
centralisation of the current approaches poses severe concern
[42]: it fully relies on the truthfulness of the SP (i.e., a
delegated authentication and authorisation server) as it is the
only authority to (i) authenticate and authorise participants;
and (ii) control data access and provenance.

From an end user’s perspective, this leads to a lack of
transparency and accountability of data management and raise
risks of personal data leakage. As all data management mech-
anisms are operated in a centralised system and under the SP’s
control, the SP may still be able to hand over personal data
to an unauthorised TP without the end-user’s knowledge, as
far as it is not investigated by supervisory authorities. From an
SP’s perspective, as investigation from supervisory authority is
occasionally carried out, it is challenging for an SP to declare

8https://oauth.net/2/
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Fig. 1: Personal data management and sharing scheme in the conventional client-server
architecture

that it has been continuously, securely and legally processing
all personal data as required. This is of paramount importance
for any SP to build trust with prospective clients. Furthermore,
delegated permissions on personal data are not flexible as end-
users do not have a fine-granular access control to impose their
preferences on data usage except simple conditions predefined
by SPs. Indeed, SPs currently provide only options to either
“accept all” or opt-out.

Motivated by such challenges, our ultimate goal is to de-
velop a GDPR-compliant personal data management platform
by leveraging the state-of-the-art BC and SC technologies.
The use of BC with SC provides autonomous operations
securely executed in a decentralised manner. Furthermore, the
prominent features of the BC technology, namely immutabil-
ity, traceability, transparency, and pseudo-anonymity, can be
effectively utilised to manage personal data fully complying
with the GDPR legislation.

IV. DESIGN CONCEPT

In this section, we propose a design concept for a GDPR-
compliant personal data management platform, including a
high-level system architecture, design guidelines, and detailed
functionalities and algorithms.

A. Conceptual Model and System Architecture

1) Assumption: The design of a BC-based platform de-
pends on the security models of the parties involved. In this
article, we assume that an RS is “honest-but-curious” whereas
SPs follow a malicious model. This means the RS executes
required protocols honestly, even though it might be curious
about the results it receives after the operations. If an SP
correctly follows the required protocols; it will be compliant
with the GDPR; otherwise violations will be logged in an
immutable ledger as a record of GDPR infringements.

2) High-level System Architecture: A conceptual model of
the proposed platform is illustrated in Fig. 2. The inclusive
idea is that mechanisms which are related to GDPR compli-
ance are ported to a BC network from a traditional centralised
server. In particular, the Authorisation and Authentication, IdM
and Access Control; and Logging and Provenance components
are implemented in the form of SCs deployed in a BC network.
If a BC framework offers Turing-completeness (e.g., Ethereum

and Hyperledger Fabric), GDPR-related mechanisms can be
conveyed by SCs. As depicted in Fig. 2, all activities on
personal data are authenticated and authorised by the proposed
BC platform (step 1 and 2). The BC, playing as a role of
a delegated authentication and authorisation server, issues an
access token as “proof of permission” showing that a party
has been granted to access a particular dataset. An authorised
SP receives the access token (step 2) and use it to request
desired data from the RS (step 3). The RS interacts with
the BC platform to validate the granted access (step 4 and
5) before returns the requested data (step 6). The validation
ensures the granted access is still valid and honestly used by
the corresponding authorised party.

Fig. 2: High-level system architecture of the design concept for a BC-based personal
data management platform. The operation flow consists of 6 steps, among which step
1, 2, 4, and 5 are dedicated to granting and validating permissions operated through

Smart Contracts. Step 3 and 6 operated via API calls and data-flow from/to an
Resource Server.

B. Design Guidelines

1) IdM, Authentication and Authorisation Mechanisms:
IdM, authorisation, and authentication mechanisms are of
paramount importance in any data management system since
they are directly related to security and privacy of the system.
In the design concept, an entity in a BC network should be
uniquely identified using a public-key (or hash of the public-
key) in an asymmetric cryptography key-pair; authentication
and authorisation processes should be implemented leveraging
public-key cryptography techniques (e.g., digital signatures
and encryption). In the case of permissioned BC, an additional
access control layer is consolidated by using a Certificate
Authority (CA) and a Membership Service Provider (MSP).

2) Design of Distributed Ledgers: Content of a distributed
ledger reflects historical and current states of information
recorded in the ledger maintained by the BC network. A
personal data management platform should clarify what infor-
mation and associated data model to be stored in the ledger.

(i) Information required to be tamper-resistant, transparent
and traceable should be recorded in a distributed ledger.

- Any personal dataset should be specified by both DS and
DC using digital signatures in a distributed ledger;
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- Data Usage Policy should be clearly specified and
recorded in a distributed ledger;

- Data activities should be logged in a distributed ledger.
The logs should contain information about ‘who’, ‘why’,
‘when’, ‘what’ and ‘how’ personal data was processed;

- Hash of personal data can be recorded in a distributed
ledger for data integrity checking.

(ii) The design of a distributed ledger must ensure:
- Designated nodes in the BC network are able to verify

whether an entity is the DS or the DC of a dataset;
- Designated nodes in the BC network should be able to

verify whether an entity’s activity satisfies the data usage
policy as recorded in a distributed ledger

3) Data Usage Policy: The policy specifies data governance
measures including rights, permissions, and conditions. The
usage policy should be defined in a fine-grain and expressive
way using a policy language such as eXtensible Access Con-
trol Markup Language (XACML) and Model-based Security
Toolkit (SecKit) designated for the IoT domains [43]. By na-
ture, a blockchain-based personal data management following
the proposed design concept provides a fine-grained access
control capability as an individual user is able to customise
her own policy on each dataset by imposing access control
preferences recorded onto the ledger.

4) Off-chain Data Storage: Personal data should be stored
off-chain for better scalability and higher efficiency. Moreover,
storing personal data directly onto BC, even in an encrypted
form, could pose potential privacy leakage and result in
non-compliance with the GDPR [44]. Depending on specific
scenarios, a conventional DBMS (e.g., Oracle or MongoDB), a
storage cloud service (e.g., S3, AWS or Azure), or a distributed
storage system (e.g., IPFS [4] or Storj [45]) can be used for
data storage. Only reference to the data is stored on-chain
(i.e., stored in distributed ledgers). The reference is called
data pointer that can be a hash9, a connection string, an
absolute path, or an identifier referring to a dataset; depending
on specific off-chain storage system used in the platform.

C. Functionalities, Ledgers Data Model and Algorithms

1) Identity Management: We introduce complex-identity,
denoted as c-ID, to specify a digital asset associated with two
or more parties. A c-ID can be considered as an extension
of asymmetric keys. In the context of the personal data
management, a c-ID of a dataset m comprises an asymmetric
key pair of the DS, an asymmetric key pair the DC, and
an asymmetric key pair of the data pointer (denoted as pm)
of m. As the data usage policy depends on the requester’s
role (i.e., DS, DC, or DP), the way we define c-ID specifies
the entities associated with m, and simplifies the process
of verification. Any digital signature scheme such as Digital
Signature Algorithm (DSA) or Elliptic Curve Digital Signature
Algorithm (ECDSA)10 can be used to generate and manage
the c-ID, which is formally defined as a triple of probabilistic
polynomial-time algorithms (G,S,V):

9Hash is a type of the data pointer used in a content-addressed storage
system such as DHT, IPFS, and Stoij.

10https://en.wikipedia.org/wiki/Elliptic Curve Digital Signature Algorithm

• G: a key generator that creates a public-private key pair
(pk, sk).

• S: a signing algorithm that takes sk and a message x
as inputs and produces a signature t = S(sk, x) as the
output.

• V: a signature verifying algorithm that takes pk, x, t as
inputs, and outputs accept or reject. For all x and
(pk, sk), V (pk, x, S(sk, x)) = accept.

A complete c-ID is defined as a 6-tuple as follows:

c-IDcomp
DS,DC = (pkDS , skDS , pkDC , skDC , pkenc, skenc) (1)

where (pkDS , skDS), (pkDC , skDC) and (pkenc, skenc) are
asymmetric key-pairs of DS, DC and pm, respectively. The
c-ID is externally observed by nodes in a BC network as a
3-tuple:

c-IDext
DS,DC = (pkDS , pkDC , pkenc) (2)

The c-ID is observed by the DS (or DC) as a 5-tuple:

c-IDDS
DS,DC = (pkDS , skDS , pkDC , pkenc, skenc) (3)

c-IDDC
DS,DC = (pkDS , pkDC , skDC , pkenc, skenc) (4)

When a DS grants consent to a DP to access m, the private
key skenc of pm is shared to the DP through a secure channel.
The DP then observes the c-ID as a 4-tuple:

c-IDDP
DS,DC = (pkDS , pkDC , pkenc, skenc) (5)

The c-IDDP
DS,DC includes the key-pair (pkenc, skenc) used

to encrypt and decrypt sensitive information, including the data
pointer pm. Thus, only designated nodes are able to decrypt the
ciphertext using the shared private key skenc. As a result, the
information is protected from all other players in the system.
Normally, RSA (Rivest-Shamir-Adleman) is used for public-
key encryption mechanisms in a digital signature scheme
such as DSA and ECDSA, formally defined as a 4-tuple
(G,D, E ,D): the key generator, key distribution, encryption
and decryption mechanisms, respectively.

2) Distributed Ledgers Data Model: In the proposed design
concept, ledgers are in the form of key-value pair, which is
widely used in BC frameworks including Ethereum and HLF.
For complex business logic, extra tasks might be required
for mapping high-level data structures into key-value pairs. A
state is a snapshot of a ledger at a specific time whereas state
transitions are a result of transactions for creating, updating
or deleting key-value pairs. A ledger contains a full history
of state transitions recorded in a BC, thus it is timestamp-
sequenced, immutable and tamper-resistant. With the key-
value data format, all information can be obtained by referring
to the latest state of the ledger, which is written in the most
recent block of the BC. Some frameworks duplicate the latest
state of a ledger (i.e., world-state) from a BC to a DBMS
for better performance and for supporting advanced query
capability (e.g., rich query). For example, either CouchDB11

or LevelDB12 are used in the HLF for its world-state database.
Following the design guidelines for distributed ledgers, we

specify data models for two separate ledgers used in personal

11http://couchdb.apache.org
12http://leveldb.org
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1 {"3A_ledger": {
2 "key": {
3 "owner": pk_DS,
4 "controller": pk_DC
5 }
6 "value" {
7 "en_pointer": 3erwf3ese6d5c4...,
8 "policy": {
9 "rule": {Effect},{Condition},

10 "action": "read, update",
11 "target": "{pk_1, pk_2, ...}"
12 },
13 "pk_enc": "fMA0GCSqGSIb3...",
14 "hash": "369f2e3e69dc40543...",
15 "timestamp": 1549480378
16 }}}

Listing 1: A state of the 3A ledger in JSON format. Content of the ledger includes
en pointer: ciphertext of a data pointer; pk enc: public key used to encrypt the
en pointer; policy: data usage policy, and hash of the data.

1 {"log_ledger": {
2 "key": {
3 "owner": pk_DS,
4 "controller": pk_DC,
5 "processor": pk_DP
6 }
7 "value" {
8 "access_token": "aAD0Gdfs234S3...",
9 "issued_at": 1549480378,

10 "status": "approved",
11 "operation": op,
12 "scope": []ops,
13 "expires_in": 3600,
14 "refresh_count": 1,
15 }}}

Listing 2: A state of the log ledger in JSON format. Content of the ledger includes
status: either approved or rejected, operation: an activity a DP used to
process the data such as CRUD, scope: a set of allowed permissions, expires in
and refresh count: dedicated to controlling the access token.

data management: 3A ledger (Listing 1) and log ledger
(Listing 2). The 3A ledger is used in authentication, authori-
sation and access control whereas the log ledger is used for
access token validation and logging. Both ledgers are in key-
value format in which keys in the 3A ledger and log ledger
are c-IDDS,DC and c-IDDS,DC,DP , respectively. The value
in both ledgers contains information being used in the personal
data management and provenance operations.

Note that the content of the ledgers can be seen by corre-
sponding nodes in the BC network, either honest or malicious
ones. Therefore, sensitive information should be protected.
For instance, asymmetric cryptography is used for pseudo-
anonymous identity; and reference to a dataset (i.e., data
pointer pm) is encrypted (Eq. 6).

en pointer = E(pkenc, pm) (6)

3) Authentication, Authorisation and Access Control:
Public-key cryptography has been commonly used in BC-
based systems to authenticate participants involved in a variety
of tasks from consensus protocol participation to SC opera-
tions. In our design concept, the authentication is achieved by
using the algorithm V in the 3-tuples digital signature scheme
G,S,V based on any RSA/DSA-variants. The authorisation in
personal data management is to specify access control (e.g.,

consent and usage policy); and data provenance tracking is to
log data activities in an immutable and tamper-free ledger.

Fig. 3: Process of granting consent for a DP.

In the initial step (i.e., Registration function), a DS grants
consent to a DC for managing her personal data along with
a shared key-pair (pkenc, skenc). A new record is appended
into the 3A ledger specifying a new key-pair for the personal
dataset with default settings granting DS all permissions (e.g,
CRUD operations) specified in the policy. The policy can
be considered as an access control list/rules for a dataset,
updated when consent is granted or revoked. The hash and
the en pointer in the record are then updated once the DS
upload her data to an RS by calling DataUpload function.
In our pseudo-codes, interactions with BC is through either
GetState or PutState function provided by built-in APIs.

Alg. 1: GrantConsent grants a consent for a DP
Input : c-ID ci, signature tDS , signature tDC , public-key pkDP ,

signature tDP , permission op
Output: out

1 Initialisation: rec ← null, out ← error

2 s1← V(ci.pkDS , tDS)
3 s2← V(ci.pkDC , tDC)
4 s3← V(pkDP , tDP )
5 if (s1 ∧ s2 ∧ s3) then
6 policy ← GetState(3A ledger).GetPolicy(ci)
7 PutState(3A ledger).Update(ci, policy, {pkDP , op})
8 rec ← JSON.Marshall({ci, pkDP }, {scope[]+=op,

access token=rand(), issue at=Time.now(),
status=“approved”});

9 PutState(log ledger).Append(rec);
10 out ← success

11 Return out

Fig. 3 depicts a sequence diagram of granting consent for
a DP. The consent is granted if both DS and DP accept the
request by providing their digital signatures t DS and t DC
in step (2) and (3). Step (4) and (5) are carried out by the
GrantConsent function (Alg. 1). Authentication is achieved
by using verification function V for all DS, DC, and DP (line
2-4). If the authentication is accepted (line 5), access control is
then carried out by reflecting the permission into policy in the
3A ledger. As depicted in Alg. 1, the GrantConsent firstly
grants permissions (i.e., requested operation op) by updating
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policy with op in the 3A ledger (line 6, 7). Secondly, the
GrantConsent appends a new record into the log ledger
(line 9), which is used for validating and logging whenever
the DP accesses the data. The access token with other
metadata is generated as value in the key-value format record
(line 8). Technically, access token is a string of random-
looking characters referring to a collection of metadata in the
log ledger. A multi-signature technique is also used in the
algorithm to ensure consent is granted by both DS and DC.

RevokeConsent function is to revoke a permission previ-
ously granted to a DP. As depicted in Alg. 2, it is only executed
by either DS or DC. Similar to GrantConsent function,
RevokeConsent appends an updated policy excluded the
revoked permission op to the 3A ledger (line 4, 5) and
updates the log ledger accordingly (line 6,7).

Alg. 2: RevokeConsent revokes a permission previously
granted to a DP

Input : c-ID ci, signature t, public-key pkDP , permission op
Output: out

1 Initialisation: rec = null, out = error

2 s← (V(ci.pkDS , t) ∨ V(ci.pkDC , t))
3 if s then
4 policy ← GetState(3A ledger).GetPolicy(ci)
5 PutState(3A ledger).Update(ci, policy, {pkDP , −op})
6 rec ← GetState(log ledger).GetRecord(ci, pkDP )
7 rec ← PutState(log ledger).Update(rec, {scope[]-=op,

access token=rand(), issue at=Time.now()});
8 out ← success

9 Return out

Fig. 4: Sequence diagram of accessing data stored in an RS by a DP

Once consent is grant, the operation flow of accessing
personal data is demonstrated in Fig. 4. Whenever DP desires
to access personal data (step (1)), it invokes a corresponding
SC with the DataAccess function (Alg. 3). As can be seen
in Fig. 4, after checking eligibility of the call (i.e., step (2)
and (3) executed by line 2, 3 in Alg. 3), the SC returns two
outputs en pointer and access token to the DP (step (4)),
executed by line 6-9 in Alg. 3. The DP then uses the shared
private key skenc (already obtained from step (8) in Fig. 3)

for decrypting the en pointer. The decrypted ciphertext (i.e.,
de pointer) is the datapointer for the desired dataset. Both
de pointer and access token are used as parameters for an
API call to process the data (step (5)).

Alg. 3: DataAccess returns en pointer and access token
for an eligible request

Input : c-ID ci, public-key pkDP , signature tDP , permission op
Output: out

1 Initialisation: rec ← null, out ← rejected

2 s← (V(pkDP , tDP )
3 if s then
4 policy ← GetState(3A ledger).GetPolicy(ci)
5 if (policy ⊂ (pkDP , op)) then
6 en pointer ← GetState(3A ledger).GetPointer(ci);
7 access token ← GetState(log ledger).GetToken(ci,

pkDP );

8 out ← (en pointer, access token)

9 Return out

A function called TokenV alidation is dedicated to double-
checking the validity of the access token and updates the
log ledger. In Alg. 4, line 4 is to obtain metadata associated
with the access token from the log ledger; if the request
is from DS or DC then there is no need to validate the
access token; only log ledger is updated (line 5-7). Oth-
erwise, the validation is then conducted by inspecting the
metadata (line 9-12) before updating the log ledger (line 13).
The TokenV alidation is performed to ensure that only API
calls with valid an access token leads to an execution of the
call (step (9)). Step (7) safeguards that all valid API calls are
autonomously logged in the log ledger. It is worth to mention
that the honest-but-curious RS assumption plays a key role in
the success of our platform because the RS must follow the
authorisation process (i.e., double-check API calls from DPs
with the BC system) before executing the calls.

Alg. 4: TokenV alidation double-checks the validity of an
access token and update the log ledger

Input : Token access token, public-key pk, signature t
permission op

Output: out
1 Initialisation: rec ← null, out ← rejected

2 s← (V(pk, t)
3 if s then
4 rec ← GetState(log ledger).Query(access token)
5 if ((rec.owner = pk) ∨ (rec.controller = pk)) then
6 rec ← PutState(log ledger).Update(rec,

{expires in-=Time.now(), issue at=Time.now()});
7 out ← accepted

8 else
9 if ( (rec.processor = pk) ∧ (rec.scope ⊂ op) ∧

10 (rec.expires in > 0) ∧ (rec.operation = op) ∧
11 (rec.status = approved) ∧ ...) then
12 rec ← PutState(log ledger).Update(rec,

{expires in-=Time.now(), issue at=Time.now()});
13 out ← accepted

14 Return out
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V. PLATFORM DEPLOYMENT IN PERMISSION
BLOCKCHAIN

In this section, we implement a platform following the
proposed design concept for managing personal profiles for
an SNS. The choice of using a permissioned BC framework
in the demonstration does not imply that a public one is less
appropriate for implementing the proposed design concept.
Instead, HLF is chosen due to its business-oriented architecture
offering better adaptation to the use-case; also, thanks to its
readily existing software components for a rapid development
cycle of our platform. Detailed technical solutions and imple-
mentation of the platform are presented. Source-code of the
demonstration can be obtained from Github13.

A. HLF Platform Setup

HLF is the most popular permissioned BC framework used
by big enterprises such as IBM and Microsoft. As being
permissioned, a node involved in an HLF network is associated
with an identity and permissions provided by a CA and
an MSP, respectively. Nodes in HLF take up one of three
roles: Client, Peer and Ordering Service Nodes (OSNs). In
our demonstration and for the performance evaluation, we
have deployed different HLF network settings include 3 OSNs
running in Kafka cluster mode for providing the ordering
service, from 4 to 32 peers, and a varied number of clients
from 10 to 1000. All peer nodes endorse both SCs (i.e.,
chaincodes in HLF terminology), namely 3A cc and log cc.
That means these two SCs are locally installed, instantiated
and executed in all 5 peers to interact with the two ledgers
3A ledger and log ledger, respectively. These two ledgers
are exactly following the data models described in Section
IV.D. As the two distributed ledgers are being used and HLF
allows only one ledger per channel14, two HLF channels are
created, namely 3A channel and log channel. All Peers and
OSNs belong to both channels; the 3A cc and the log cc
SCs are operated in the 3A channel and the log channel,
respectively. As a result, all the peer nodes separately endorse
the two SCs corresponding to different local ledgers. The two
local ledgers are stored in Linux filesystem whereas the world-
state database is duplicated in CouchDB.

All clients are populated using the Fabric Client SDK (for
NodeJS) for interacting with the HLF network. As illustrated
in Fig. 5, a client constructs a transaction proposal to invoke
either 3A cc or log cc SCs (step-1) and sends to all endorsing
peers (i.e., endorsers). These peers verify the proposal and lo-
cally execute the 3A cc or log cc to produce an endorsement
signature (i.e., transaction results with the peer’s signature)
(step-2) and pass back to the client (step-3). Once receiving
endorsement signatures, the client assembles the endorsements
into the transaction and broadcast it to the OSNs, running
Kafka mode (step-4). The OSNs validate and commit the
transaction (step-5), then broadcast a message to all peers to
update their local ledgers (step-6). In case the transaction is

13https://github.com/nguyentb/Personal-data-management
14Channel is a terminology in HLF technically referring to a private

blockchain overlays which offers data isolation and transaction confidentiality.

not successful, and the ledgers are not updated but the proposal
is still logged for audit.

Fig. 5: High-level system architecture and transaction flow of the HLF framework

B. Personal Profile Management Use-case

We consider a use-case that a social networking SP process-
ing profile data stored in a separate RS. This RS follows the
honest-but-curious model anticipating the BC as an HLF client
and honestly executing required protocols (i.e., interacting
with the BC network for token validation). To comply with
the GDPR, the SP participates in the proposed BC-based
platform (Fig. 6). To demonstrate the use-case, we build the
RS as a profile management web-service based on REST
architecture15 for parties to process profile data through calling
corresponding RESTful APIs. Profile information is stored in
JSON-like documents using MongoDB16, a document-oriented
database system. The profile data model follows the Friend-
Of-a-Friend (FOAF) ontology for describing person which
is normally used in social networks17. Processing a profile
includes {create, read, update, delete} CRUD operations by
making a request to a corresponding API provided by the RS.

Fig. 6: System architecture of a GDPR-compliant social networking service with the
RS for personal profiles using HLF

A request to a RESTful API contains 6 parame-
ters: (1)API-Endpoint, (2)REST -Endpoint, (3)Method,

15https://en.wikipedia.org/wiki/Representational state transfer
16https://www.mongodb.com/
17http://xmlns.com/foaf/spec/
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1 POST localhost:8080/ProfileManagement
2 -H 'Content-Type:application/json'
3 pubkey=pk&
4 signature=t&
5 token=access_token
6 &operation=read

(4)Header, (5)Params, (6)Payload in which the first fours
are required. A RESTful request is as follows:

where Method is POST , REST -Endpoint is
localhost:8080, API-Endpoint is /ProfileManagement,
Header is Content-Type:application/json following by
Params including the public-key pk with the signature t,
the access token, and the requested Read operation.

C. Identity Management and Pseudo-anonymity

Any entity in HLF including clients, peers, orderers, CAs
and MSPs needs to be identified by digital identities (e.g.,
X.509 standard) before interacting with the HLF network.
In our HLF-based system, a built-in CA called Fabric CA
is used to generate X.509 digital certificates, adopting the
traditional Public Key Infrastructure (PKI) hierarchical model.
An X.509 digital certificate contains a public key (along with
a corresponding private key) and associated information of
an entity (e.g., organisation, host-name, and domain. This
certificate is then either signed by the Fabric CA or self-signed.
The Fabric CA server in our system is initialised using Docker
which hosts an HTTP server on the default port 7054 that
offers REST APIs. All entities have to enrol and register with
the CA server via the REST APIs using either the Fabric CA
client or the Fabric SDK before participating in the blockchain
system. Once an entity is enrolled and registered, an enrolment
certificate (eCert), a network transaction certificate (tCert),
a CA certificate, and a corresponding private key are stored in
PEM files in the subdirectories of the entity’s directory.

In the HLF settings, ECDSA, an updated version of the
DSA scheme leveraging elliptic-curve cryptography, is used
with 256-bit key-size, which guarantees that any public-private
key pairs generated by the generator G is practically unique
across the HLF network. Moreover, the hiding property of the
ECDSA also ensures that there is no practical mechanism to
recover a private key from the corresponding public key [46].
As a result, HLF entities, whose identifiers are X.509 digital
certificates, preserve the pseudo-anonymity property. However,
as HLF is a permissioned blockchain, all of HLF entities are
under control of a certificate authority CA (in our system is the
built-in Fabric CA); this means the pseudo-anonymity property
depends on the security and trustworthiness of the Fabric CA.

To administer entities evolving in variety of HLF tasks,
MSP is used for specifying participants, roles, and access
privileges in a HLF network and channel. An MSP provides
a configuration identifying trusted root and intermediate CAs;
these CAs then define members of a trust domain by either (i)
listing identities of the members or (ii) identifying authorised
CAs that issue valid identities for members. The latter is
used in the demonstration. Technically, an entity’s identity is

1 function ClientID(stub shim.ccAPI) ci *clientID {
2 hlfId = ci.New(stub);
3 mspID = hlf.GetMSPID();
4 cert = hlf.GetX509Certificate();
5 return &clientID{mspID, cert};
6 }

Listing 3: Identity of a HLF client constituted from mspID and X.509 certificates
utilising the cid library

1 "policy" {
2 "Create": {pk_DS, pk_DC, ..},
3 "Read": {pk_DS, pk_DC, pk_DP1, pk_DP2, ..},
4 "Update": {pk_DS, pk_DC, pk_DP3 ...},
5 "Delete": {pk_DS, pk_DC, pk_DP3, pk_DP4, ..}
6 }

Listing 4: Data Usage Policy defined as an Access Control List under JSON format

associated with its MSP and implemented using the HLF client
identity chaincode library cid18 as shown in Listing 3:

D. Smart Contracts Implementation

There are two chaincodes implemented in the HLF network:
(i) the 3A cc for authentication, authorisation and access
control, operating with the 3A ledger; and (ii) the log cc for
access validation and logging, operating with the log ledger.
Theoretically, a contract can be written in any programming
language; and in the demonstration, Go language is used. The
two chaincodes inherit the built-in shim package19, which
provides a variety of APIs to interact with distributed ledgers
such as accessing state variables, transaction context and call
other chaincodes.

Regarding the distributed ledgers, en pointer is the cipher-
text of an identifier of a data object (i.e., profile.ID) using
the encryption function E with the encryption key pkenc:

en pointer = E(pkenc, profile.ID) (7)

A party who permitted access a profile has a shared private
key sk enc to decrypt en pointer in order to obtain the
profile.ID, which is then passed as a parameter for a
RESTful API to access the desired profile information:

profile.ID = D(skenc, en pointer) (8)

The policy in the 3A ledger is simply defined as an
access control list (ACL) as shown in Listing 4. The ACL is
implemented as a struct in the 3Acc specifying four access
rights for participants called Create, Read, Update and
Delete (representing four CRUD operations). Associated with
each access right is a list of granted parties including DS, DC
and DPs (under their public keys such as pk DS, pk DC,
and pk DP ).

Based on the identity scheme and detailed informa-
tion for the two ledgers, core functions in personal data
management such as GrantConsent, RevokeConsent,
TokenV alidation and DataAccess are then implemented
exactly following the algorithms described in Section III.D.

18https://github.com/hyperledger/fabric/blob/release-
1.1/core/chaincode/lib/cid/README.md

19https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim



11

VI. ANALYSIS AND DISCUSSION

This section provides analysis and discussion on the plat-
form deployed in Section V, including GDPR-compliance
applicability, threat models and system performance.

A. Trust Assumption

Besides the honest-but-curious characteristic of the RS, a
must assumption is that a large portion of peer nodes in
the HLF network are honest. Generally, HLF v1.x offers
multiple ordering techniques including a variety of BFT-based
solutions such as pBFT. Such BFT-variant protocols are able to
conditionally tolerate ⌊N−1

5 ⌋ (e.g., in Ripple [47]) to ⌊N−1
2 ⌋

(e.g., in crash-fault tolerance) simultaneously faulty nodes.
Such BFT-variant protocols guarantee consistency despite any
number of node failures and network partition, with at most
⌊N−1

3 ⌋ faulty nodes [48]. Unfortunately, these protocols are
under development for the HLF framework, and only Apache
Kafka is provided as a reference implementation, which sup-
ports some levels of fault-tolerant (e.g., crash-faulty) but not
Byzantine failure.

The cryptographic primitives (i.e., cryptographic hash func-
tion SHA256, the public-key cryptography RSA and the
digital signature schemes ECDSA) are practically secure.
This means adversaries are not able to: (i) reverse/break the
cryptographic hash function, (ii) reverse a public key to obtain
a private key, and (iii) forge a digital signature of another
party without knowing the corresponding private key. As our
system is built on top of the permissioned blockchain HLF,
the Fabric CA with built-in PKI, which are responsible for
the distribution of management of X.509 digital certificates,
are assumed to be secure and honest. This means in general
adversaries are not able to mislead the Fabric CA in large-
scale (e.g., more than ⌊N−1

3 ⌋ adversaries granted in the HLF
network) in order to subvert the HLF system (e.g., 51%
attack or Sybil attack). However, some internal adversaries
might be granted to participate in the network, resulting
in non-GDPR-compliance. Regarding key management, we
assume that private keys obtained by the key generator G are
effectively protected from adversaries by leveraging existing
solutions from enterprise systems. However, this is the weak
assumption, meaning that an adversary could somehow obtain
a private key and impersonate an honest party to access data
which also leads to non-GDPR-compliance. These threats of
non-GDPR-compliance will be considered under Section VI.C.

B. GDPR-Compliance

From an applicability perspective, the proposed platform
provides SPs (e.g., the SNS) mechanisms to fully comply with
the GDPR. This is due to the following reasons:

1) Full Control back to Data Owners: As following the
design concept, the platform provides DSs:

• “Right of access” and “right of rectification”: This is
because DS is eligible to do all CRUD operations to
her personal data as specified in the default policy when
ledgers are initialised, and no one can change these rights.

• “Right of restricted processing” and “right of data porta-
bility”: This is because DSs have full permissions to

manage data usage policy (e.g., to grant or revoke consent
anytime/anywhere by invoking the GrantConsent and
RevokeConsent functions in the 3A cc).

• “Right to be informed”: This is because the platform
always requires DS’s signature for data collection or for
granting consent.

• “Right to be forgotten”: As personal data is stored off-
chain, an RS is able to erase the data as requested
from DS. However, a question is posed when leverag-
ing BC for personal data management: “whether a BC
platform complies with the GDPR as distributed ledgers
are immutable; meaning that the ledgers, theoretically,
will never be erased?”. Therefore, if a piece of personal
information is recorded in a ledger, the platform will
violate the “right of forgotten”. In the design concept,
sensitive information is encrypted before writing into a
ledger (e.g., data pointer). The “right of forgotten” is
then ensured by throwing decryption keys. Whether this
remedy fully satisfies the GDPR is still an open question
[44], [49].

2) Security, Transparency and Accountability: By follow-
ing the design concept, the platform ensures that:

• Security of the identity, authentication and authorisation
mechanisms, which depends on the security of the cryp-
tographic primitives, is assumed to be secure.

• Operations (e.g., grant or revoke a consent, update usage
policy, verify access token, and CRUD) are authenticated,
authorised and autonomously executed only by invoking
corresponding SCs deployed in the HLF network. This
ensures system procedures are executed in a transparent
and not compromised by any individuals.

• Information about management operations and CRUD ac-
tivities on personal data, including who/what/when/why/
and how are immutably recorded in the log ledger.

Consequently, the proposed platform forces SPs, who par-
ticipate in the system, to be responsible for complying with the
GDPR; otherwise any unauthorised or malicious transactions
initiated by a corresponding SP can be always figured out.
Furthermore, the investigation for GDPR-compliance is em-
powered as all activities logged in the ledgers can be traced
back. The signalling of a non-compliant activity could trigger
official investigation and auditing of an SP by a supervisory
authority. The decisions could be made based on whether
a malicious activity recorded in the log ledger exists that
respects the associated data usage policies in the 3A ledger.
In this regard, the two distributed ledgers can be considered
as legal grounds for the GDPR compliance. As a result,
the platform is able to demonstrate the GDPR compliance.
Therefore, the proposed BC-based platform provides efficient
measures to meet the requirements of data accountability.
For those reasons, a social networking SP, which utilises
the platform for its personal data management tasks, fully
complies with the GDPR.

C. Threat Models

The advanced capability of the BC framework plays a
key role in providing a secure and trustworthy platform for
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complying with the GDPR. However, certain aspects of the
contemporary BC and SC technologies present limitations
imposing threats resulting in non-compliance with the GDPR.

1) Security Threats: Given the aforementioned assump-
tions, the decentralised nature of the BC ensures that an
adversary cannot corrupt the BC network to unauthorisedly
change the ledgers as that would imply the majority of the net-
work’s resources are compromised. Also, the adversary cannot
impersonate an authorised party as its digital signature cannot
be forged. Security threats are, thus, from two sources: (i) an
internal adversary acting in a Byzantine way, who has been
granted to access personal data; and (ii) an honest party whom
both private key and decryption key skenc are disclosed to an
external adversary; thus, the adversary could pose itself as the
party. In such scenarios, the TokenV alidation function is of
paramount importance since it plays as a role of a gatekeeper
to reassure that any access token expires after the amount
of time and needs to be refreshed (i.e., re-authenticated and
re-authorised). As a result, the TokenV alidation mitigates
the risk of a long-lived access token leaking, similar to the
use of both access token and refresh token used in the
standard OAuth2 specification20.

Admittedly, it is inevitable that an adversary is able to
access the data in the time-frame window of the access token
(defined by the expires in parameter in the log ledger).
During this period, it is unachievable to prevent the adversary
from accessing data unless the security breach is detected.
Once being detected, DS is able to revoke the consent by
updating the ledgers to remove all permissions related to
the adversary. The remedy is straightforward in case of the
first scenario - the party is malicious. However, it turns to a
complex situation when an honest party leaks its private key
to the adversary. This party is never able to get granted again
as its identity is compromised, which is unreasonable. A key
management with an account recovery scheme could be an
applicable solution to deal with this situation although it is
expected to be much complicated to integrate the recovery
scheme with a BC system [50]. Another security threat comes
from poor quality code in SCs which exposes vulnerabilities to
be exploited. For example, an attacker stole 3.6M Ether (worth
$50M at that time) in DAO21 attack exploiting a concurrency
bug in DAO’s SCs. As a BC framework supporting Turing-
complete SCs, software bugs are painful to avoid. Thus, SCs
must be written in high-quality standards and follows strict
security specifications [30], [51].

2) Privacy Threats: The openness of distributed ledgers,
which allows parties to inspect, violates the idea of privacy.
Even in a permissioned BC in which transactions take place
between authenticated parties, some privacy threats remain as
any participants could be malicious. In the proposed design
concept, measures to tackle privacy leakage are to both: (i)
provide pseudo-anonymity for parties using public key cryp-
tography as identities; and (ii) encrypt sensitive information
exposed on the ledgers.

20https://tools.ietf.org/html/rfc6749
21https://ethereum.org/dao

The first measure provides pseudo-anonymity, thus, there
is a possibility to link between public addresses with phys-
ical identification of the users by using a variety of de-
anonymisation techniques [52]. Literally, the risk of revealing
real-world identity by an adversary can be significantly re-
duced in a permissioned BC compared to a public one thanks
to an additional permission access control layer [27], [53]. As
a trade-off, anonymity is sacrificed as it requires more identity
materials for stringent privacy requirements.

The second measure is to encrypt data pointer (i.e.,
profile.ID in the demonstration), which is used as a pa-
rameter in API calls for accessing a personal dataset. The
encryption ensures that the information is only visible to
designated parties, reducing the risk of leaking the information
to adversaries. Some other information recorded onto the
ledgers such as data usage policy (i.e., policy) and activities
log must be in plain text as the information is referred by peers
for some business logic when executing the chaincodes. Even
though this information is not directly related to identifiable in-
dividuals, this might be a source of privacy leakage as it might
be used in de-anonymisation techniques. At this moment, no
particular privacy threat has been pointed out due to exposing
such information. Nevertheless, further investigation might
need to be carried out for this potential threat. Homomorphic
Encryption could be used for information encryption support-
ing query on cipher-text [54]. Flexible encryption schemes like
attribute-based encryption (ABE) [55] might also be used as a
remedy to encrypt such information and only a designated
group of peers can be decrypted. These schemes are only
suitable for permissioned BC as they rely on a trusted key
generator - which could be integrated in a CA.

D. Performance Evaluation

As the proposed platform is expected to serve a large num-
ber of clients accessing data simultaneously, performance, and
scalability of the platform is necessarily evaluated. The core
technology leaders in BC such as Bitcoin, Ethereum Enter-
prise Alliance and Hyperledger Foundation have demonstrated
promising technology advancements of both performance and
scalability. However, at the moment, public BCs can only
achieve limited throughput (e.g., Bitcoin gets 7 transactions
per second (tps) with Blocktime is around 10 minutes
whereas Ethereum reaches around 15 tps with 15-second
Blocktime 22). In permissioned BCs, additional permission
control ensures that a majority of nodes are trusted; as well as
all identities of the participants in the network are known.
This allows the use of BFT-variant consensus in the BC
platforms, theoretically resulting in higher throughput. For
instance, FabricCoin deployed on top of the HLF framework
can achieve about 3, 500 tps at a second latency [53]. How-
ever, scalability incurs as a critical issue for a permissioned
BC framework, especially frameworks with the pBFT-variant
consensus mechanisms.

1) Hyperledger Caliper Performance Benchmark: For our
performance evaluation, we use a new evaluation tool devel-

22https://bitinfocharts.com/
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Fig. 7: Performance of READ and WRITE from/to distributed ledgers in the HLF-based system under different workloads

oped by the Hyperledger Foundation called Caliper23, which is
a performance benchmark framework for various BC frame-
works including HLF, Hyperledger Sawtooth and Ethereum.
Caliper is equipped with adaptors implementing interfaces for
interacting with HLF systems version 1.x using either HLF
native SDK or a RESTful API. To integrate with our existing
HLF profile management system, we have programmed our
adaptors using Fabric Client SDK (NodeJS version) to interact
with the BC network and to invoke the two chaincodes 3A cc
and log cc. On top of the adaptation layer is a benchmark layer
implementing predefined use-cases in the form of Y AML
configuration files. We have written various use-cases for the
performance benchmark following these configurations:

• READ the ledgers (e.g., invoke policy check func-
tion) and WRITE the the ledgers (e.g., invoke the
GrantConsent and RevokeConsent functions to up-
date the ACL policy).

• Different HLF network settings in which the number of
peer nodes are varied from 4 to 32.

• Different workloads to the system by generating a number
of transaction proposals per second to the system. In each
network setting, the workload is from 100tps to 1000tps.

2) Results and Analysis: There are four metrics in the
Caliper benchmarking results, namely (1) Success Rate, (2)
Throughput, (3) Latency, and (4) Resource Consumption.
These metrics are counted from the time a transaction sub-
mitted by a client until it is processed and is written on a
distributed ledger. Fig. 7 interprets our system performance
under different number of workloads, from 100tps to 1000tps.
The HLF network setting includes 4 peer nodes and 3 OSNs
running Kafka cluster for crash-fault tolerance consensus. In
this benchmark, 1000 clients are popularised that generates
transaction proposals (including both READ and WRITE
a distributed ledger) to our system. As can be seen in the
figure, throughput of READ transactions can reach highest
to 492tps at 500-tps workload whereas WRITE transactions

23https://hyperledger.github.io/caliper/

only reach to 167 tps at 300-tps workload with highest success
rate (more than 95%) and with less than 1-second latency.
Compared to READ transactions, WRITE transactions re-
quire more processes from OSNs to chronologically order the
transactions, create a new block, and broadcast it to all peers
in the network to update a distributed ledger; that is why
WRITE transactions get lower throughput, lower success
rate, and higher latency. After these peaks, the throughputs and
the success rates of both READ and WRITE transactions
dramatically decrease. For instance, at 1000-tps workload, the
throughputs and success rates drop to about 34.5 tps and 30%;
and 3.4 tps and 1.4% for READ and WRITE transactions,
respectively. The average latency is significantly risen from
less than 1 second to 6.68 seconds (READ transaction) and
9.92 seconds (WRITE transactions) as higher workload is
generated.

Generally, the reason that the system cannot handle high
workload due to local processing bottleneck as transactions
are queued at endorsing peer’s buffer and OSNs’ buffers (for
WRITE transactions) to be processed. The HLF procedure
requires that a transaction has to obtain enough proposal
responses from endorsing peers, thus, if an endorsing peer
processes the transaction lower than others, the transaction
is delayed accordingly. Particularly for WRITE transactions
which require more processes for ordering service as such, all
WRITE transactions need to be buffered and processed at
the 3 OSNs running Kafka cluster. As we observed, OSNs are
always busy that the docker container can consume to 88%
CPU-load on average.

Fig. 8 illustrates the performance vs. scalability of our
proposed system when the number of peer nodes increasing
while the ordering service remains the same with 3 OSNs
running Kafka cluster. In this performance benchmark test,
READ and WRITE transactions are set under 500 tps and
300 tps workload, respectively. More peer nodes mean more
overhead messages exchanged between nodes, and the wait
for endorsement messages before broadcasting a transaction
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response to the OSNs to create a new block and to update
a distributed ledger. That is why the throughput decreases
and the latency increases for both READ and WRITE
transactions. As depicted in Fig. 8, the proposed HLF-based
profile management system fails to support high performance
and scalability since the throughput significantly decreases and
the latency dramatically increases when the BC network scales
up (e.g., at 32 peer nodes, throughputs are 151 tps and 42 tps
and latencies are 78s and 95s for READ and WRITE trans-
actions, respectively). Fortunately, HLF allows us to partition a
BC network in which only a subset of peer nodes are permitted
to endorse a particular chain-code. This will reduce the number
of messages exchanged across the network as well as reduce
the waiting time for endorsement messages from endorsing
peers. As a trade-off, decentralisation is partly sacrificed and
the system is more sensitive to 51% and selfish mining attacks
[56].

VII. CONCLUSION AND THE ROAD AHEAD

In this article, a design concept for a GDPR-compliant
BC-based personal data management platform is proposed.
Following the guidelines from the design concept including
system architecture, ledger data models, and SC function-
alities, a BC-based platform is implemented on top of the
HLF framework. The platform interplays among an honest
RS, a social networking SP, DPs, and DSs ensuring that all
processing activities over profile data stored in the RS are
compliant with the GDPR. The feasibility and effectiveness of
the design concept are, therefore, successfully demonstrated.

For future work, we will deploy the design concept in
a public BC (e.g., Ethereum) with an RS using distributed
storage (e.g., IPFS, BigchainDB or Storj). In this regard,
the RS is not trustworthy as some storage nodes might be
malicious. Thus, more mechanisms need to be implemented
to resolve the lack of a trusted centralised RS. As a reward,
the system is truly decentralised. Another work is to develop a
fine-grain expressive data usage policy using a policy language
instead of a simple ACL as in the demonstration. A policy
generator deployed in SCs that autonomously acquires data

usage policy depending on specific contexts is also a promising
research direction. Additionally, pricing and incentive models
for the cost of data storage and BC operations should be
carried out to finalise a complete system.

As the processing of personal data refers to CRUD op-
erations – which is under the mindset of data storage, an
ambitious research direction is to provide computational ca-
pability on a BC network [32]. This means an SP directly
runs computation on the network and obtain results using
secure Multi-Party Computation (MPC)24. This approach is
much securer as the SP does not directly observe raw data. We
believe our work acts as a catalyst to open a variety of research
directions regarding the use of BC and SCs in decentralised
authorisation and access control, which plays a crucial role
in digital assets management, particularly in personal data
regulations.
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