11,680 research outputs found

    Fluid net models: from behavioral properties to structural objects

    Get PDF
    Increasing the production in manufacturing systems is one of the main demands in modern systems. The naive approach that this goal can be achieved when more or faster resources are used is not always valid. In fact, the complex interactions among system’s elements may lead to paradoxical behaviors; for example, using faster machines could reduce the equilibrium throughput (number of part fabricated per unit time in steady state) of the system, or even worse, block all system activities, reducing it to zero. This work leverages the concepts about fluidization and analysis techniques used in Timed Continuous Petri nets (TCPN) presented in earlier works to study the behavior of the equilibrium throughput when more/faster machines are used. Herein, we illustrate how discontinuities induced bifurcations of the equilibrium throughput are due to the existence of paths that can increase/decrease the marking of certain subnets. In particular, if paths gaining/losing tokens are fired without a particular balance, then the equilibrium throughput exhibits discontinuities since the equilibrium marking loses hyperbolicity. Moreover, these discontinuities imply other undesired throughput behaviors; for example, the existence of non-monotonicities of the equilibrium throughput (when more/faster resources are used in the system, its equilibrium throughput is reduced). The discontinuities together with a homothecy property are used to explain non-monotonicities in the equilibrium throughput. A relevant aspect is that these undesired system behaviors appear when the net has structural objects named problematic configurations that are associated with certain subnets in which there are no P-semiflows. Although the number of these configurations increase exponentially in the size of the net, some reduction rules are introduced to remove configurations, while the problematic ones are kept (or can be recovered) in the reduced net. This saves computation time in the analysis and, more importantly, provides useful insights about the root of undesired behaviors. This work focus on systems that can be modeled with fluid (or continuous) mono T-semiflow Timed Continuous Petri nets. Even if under certain constraints, they are capable of capturing many characteristics of modern systems, such as interleaving of cooperation and competition

    Levantamento de Begomovirus em plantas de soja no sul do Brasil.

    Get PDF
    A família Geminiviridae é constituída por quatro gêneros: Mastrevirus, Curtovirus, Topocuvirus e Begomovirus, possuindo genoma composto por uma ou duas fitas simples de DNA circular, encapsidados em uma partícula icosaédrica geminada. A disseminação de begomovírus ocorre através da mosca-branca (Bemisia tabaci), e a incidência aumentou no Brasil com a introdução do biótipo B deste inseto vetor, em meados da década de 1990. Este trabalho teve como objetivo avaliar a presença de begomovírus na cultura da soja na região sul do Brasil. As amostras foliares de plantas de soja foram coletadas nos campos de produção localizados em 22 municípios na safra 2010/2011. Para a detecção de begomovírus foi realizada a extração de DNA desses tecidos e a infecção viral foi analisada pelo método da PCR, utilizando-se primers degenerados para o componente DNA-A, conhecido por produzir um fragmento de aproximadamente 1482 pb. Como controle positivo foi usado DNA do Euphorbia mosaic virus. Das 720 amostras de plantas de soja testadas, nenhuma estava infectada por begomovírus

    Identifying Topics in Social Media Posts using DBpedia

    Get PDF
    This paper describes a method for identifying topics in text published in social media, by applying topic recognition techniques that exploit DBpedia. We evaluate such method for social media in Spanish and we provide the results of the evaluation performed

    Low-energy elastic electron scattering from isobutanol and related alkyl amines

    Get PDF
    Normalized experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from isobutanol (C_4H_9OH)are presented. The differential cross sections are measured at incident energies from 1 to 100 eV and scattering angles from 5° to 130°. These cross sections are compared to earlier experimental and theoretical results for isobutanol and n-butanol, as well as to results for smaller alcohols and for alkanes. Further comparisons are made with calculated cross sections for isobutylamine (C_4H_9NH_2)and for smaller amines, including ethylamine (C_2H_5NH_2), dimethylamine (CH_3NHCH_3)the two C_3H_7NH_2 isomers n-propylamine and isopropylamine, and ethylene diamine (NH_2C_2H_4NH_2). The calculated cross sections are obtained using the Schwinger multichannel method. The comparisons illuminate the role of molecular structure in determining the angular distribution of resonantly scattered electrons

    Performance Evaluation of HL-LHC Crab Cavity Prototypes in a CERN Vertical Test Cryostat

    Get PDF
    Three proof-of-principle compact crab cavity designs have been fabricated in bulk niobium and cold tested at their home labs, as a first validation step towards the High Luminosity LHC project. As a cross check, all three bare cavities have been retested at CERN, in order to cross check their performance, and cross-calibrate the CERN SRF cold test facilities. While achievable transverse deflecting voltage is the key performance indicator, secondary performance aspects derived from multiple cavity monitoring systems are also discussed. Temperature mapping profiles, quench detection, material properties, and trapped magnetic flux effects have been assessed, and the influence on performance discussed. The significant effort invested in developing expertise in preparation and testing of these crab cavities has already been fruitful for all partners, and more is to come within this ongoing program

    Ingestion of microplastics by the chironomid Chironomus sancticaroli and effects on the microbiome in the presence of PBDEs

    Get PDF
    Microplastic particles in the environment can associate with persistent organic pollutants (POPs) due to the hydrophobic nature of plastics and organic chemicals. PBDEs (polybrominated diphenyl ethers) are widely used as flame-retardants in products such as textiles and soft furnishings, with the potential to leach into the environment and be associated with microplastics. If ingested, the gut environment of an organism may favour desorption of adsorbed chemicals due to gut condition. Therefore the ingestion of microplastic particles has implications for uptake and bioaccumulation of these chemicals. Furthermore the presence of microplastics and chemicals in the gut of an organism can also influence the gut environment itself. Gut microbiomes are known to hold a vital role in host metabolism, nutrition and immunity and as such understanding the influence of chemicals and microplastics on the gut microbiota is key

    Near-Horizon Conformal Symmetry and Black Hole Entropy in Any Dimension

    Full text link
    Recently, Carlip proposed a derivation of the entropy of the two-dimensional dilatonic black hole by investigating the Virasoro algebra associated with a newly introduced near-horizon conformal symmetry. We point out not only that the algebra of these conformal transformations is not well defined on the horizon, but also that the correct use of the eigenvalue of the operator L0L_0 yields vanishing entropy. It has been shown that these problems can be resolved by choosing a different basis of the conformal transformations which is regular even at the horizon. We also show the generalization of Carlip's derivation to any higher dimensional case in pure Einstein gravity. The entropy obtained is proportional to the area of the event horizon, but it also depends linearly on the product of the surface gravity and the parameter length of a horizon segment in consideration. We finally point out that this derivation of black hole entropy is quite different from the ones proposed so far, and several features of this method and some open issues are also discussed.Comment: 14 pages, no figur

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer

    Full text link
    The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers' choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago

    The X-inactivation trans-activator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells

    Get PDF
    X-inactivation, the molecular mechanism enabling dosage compensation in mammals, is tightly controlled during mouse early embryogenesis. In the morula, X-inactivation is imprinted with exclusive silencing of the paternally inherited X-chromosome. In contrast, in the post-implantation epiblast, X-inactivation affects randomly either the paternal or the maternal X-chromosome. The transition from imprinted to random X-inactivation takes place in the inner cell mass (ICM) of the blastocyst from which embryonic stem (ES) cells are derived. The trigger of X-inactivation, Xist, is specifically downregulated in the pluripotent cells of the ICM, thereby ensuring the reactivation of the inactive paternal X-chromosome and the transient presence of two active X-chromosomes. Moreover, Tsix, a critical cis-repressor of Xist, is upregulated in the ICM and in ES cells where it imposes a particular chromatin state at the Xist promoter that ensures the establishment of random X-inactivation upon differentiation. Recently, we have shown that key transcription factors supporting pluripotency directly repress Xist and activate Tsix and thus couple Xist/Tsix control to pluripotency. In this manuscript, we report that Rnf12, a third X-linked gene critical for the regulation of X-inactivation, is under the control of Nanog, Oct4 and Sox2, the three factors lying at the heart of the pluripotency network. We conclude that in mouse ES cells the pluripotency-associated machinery exerts an exhaustive control of X-inactivation by taking over the regulation of all three major regulators of X-inactivation: Xist, Tsix, and Rnf12
    • …
    corecore