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Abstract: Increasing the production in manufacturing systems is one of the main demands in modern
systems. The naive approach that this goal can be achieved when more or faster resources are
used is not always valid. In fact, the complex interactions among system’s elements may lead to
paradoxical behaviors; for example, using faster machines could reduce the equilibrium throughput
(number of part fabricated per unit time in steady state) of the system, or even worse, block all
system activities, reducing it to zero. This work leverages the concepts about fluidization and
analysis techniques used in Timed Continuous Petri nets (TCPN) presented in earlier works to
study the behavior of the equilibrium throughput when more/faster machines are used. Herein,
we illustrate how discontinuities induced bifurcations of the equilibrium throughput are due to the
existence of paths that can increase/decrease the marking of certain subnets. In particular, if paths
gaining/losing tokens are fired without a particular balance, then the equilibrium throughput exhibits
discontinuities since the equilibrium marking loses hyperbolicity. Moreover, these discontinuities
imply other undesired throughput behaviors; for example, the existence of non-monotonicities of
the equilibrium throughput (when more/faster resources are used in the system, its equilibrium
throughput is reduced). The discontinuities together with a homothecy property are used to explain
non-monotonicities in the equilibrium throughput. A relevant aspect is that these undesired system
behaviors appear when the net has structural objects named problematic configurations that are
associated with certain subnets in which there are no P-semiflows. Although the number of these
configurations increase exponentially in the size of the net, some reduction rules are introduced to
remove configurations, while the problematic ones are kept (or can be recovered) in the reduced
net. This saves computation time in the analysis and, more importantly, provides useful insights
about the root of undesired behaviors. This work focus on systems that can be modeled with fluid (or
continuous) mono T-semiflow Timed Continuous Petri nets. Even if under certain constraints, they
are capable of capturing many characteristics of modern systems, such as interleaving of cooperation
and competition.

Keywords: fluid models; Petri nets; structural properties

1. Introduction and Motivation

The more basic analysis of Discrete Event Systems (DES) focuses on properties such
as liveness, boundedness, and, when timed, system performance. Considering Flexible Manu-
facturing Systems (FMSs), as an example, the performance may deal with the number of
goods fabricated per unit time (i.e., the throughput) or the number of items in a storage
(i.e., its marking). If the throughput should be increased, then it may be an initial idea
to increase the speed of the machines or the number of resources. Unfortunately, it may
not only decrease the system throughput, but even worse, reduce it to zero (deadlock).
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An overview of these paradoxical throughput behaviors are studied in this work when the
systems are modeled with Timed Continuous Petri nets (TCPN).

Petri nets (PN) are a fine and well-known formalism to model Discrete Event Systems,
since they have a sound mathematical background, capturing in a compact manner basic
system characteristics, such as causal relationships, synchronization, and concurrence.
Moreover, their nice graphical representation provides a communication framework be-
tween engineers and practitioners. This work assumes that the reader is familiar with some
basic concepts of PN, such as (structural) liveness, (structural) boundness, or reachability
graph [1,2]. Unfortunately, as any other expressive DES formalism, they suffer from the
so-called state explosion problem, particularly when they are heavily populated (heavily
marked in PN terms). This problem is overcome with a classical relaxation: the fluidization
of the system, i.e., both, the marking and the firing vectors are now considered non-negative
real numbers. This leads to the concept of Fluid or Continuous PNs (CPNs). CPNs make
some computational problems decidable or much tractable in practice [3].

When a quantitative notion of time is introduced in the paradigm of the CPN, then
the evaluation of the system performance indices is also possible (throughput, response
time, average marking), leading to the notion of Timed CPN (TCPN). We use the infinite
server semantics (ISS), also known as variable speed, to express the firing rate of transitions.
Under this consideration, the fluid systems are continuous piecewise linear with polyhedral
regions. For certain net subclasses, which can model several types of manufacturing
systems, ISS provides better approximations of the system throughput [4]. Nonetheless,
depending on the system, other timing interpretations may be more adequate, for example,
finite server semantics (FSS) in some hydraulic systems (see [5]) or product semantics (PS) in
biologic systems (see [6]). In some sense, this work complements the overview [7] (for a
more technical and detailed presentation, see [6]).

Performance evaluation is a major concern when analyzing DES. For instance, a study
of the performance of manufacturing systems can be found in [8], where generalized stochastic
Petri nets are used to model the systems. The analysis is based mainly on the simulation
of the model to obtain the performance indices. Under the assumption of modeling with
TCPN-ISS, ref. [9] presents the performance evaluation of manufacturing systems, where
an insight of the relation between the structure of the model and the performance indices is
discussed. That relation with the structure represents how the resources and the processes
interact. The present work makes an effort to clarify how the performance of a system is
affected when the resources or the velocity of processes are modified, relating them with
the structure of the system.

This work focuses on the class of Mono-T-Semiflow-Reducible MTSR nets [10], since they
allow to model a certain degree of cooperative and competitive relationships that arise in
many practical systems, for instance flowshop or mass production systems. For the sake of
simplicity, the results in this work are formulated for Mono-T-Semiflow nets; however, they
can be easily extended to MTSR nets using the reduction rule already discussed in [10].

For the class of MTSR nets, the number of firings of transitions per time unit can
be interpreted as the finished jobs per time unit in the flowshop, which can be used to
measure the performance of the manufacturing system and is related to the equilibrium
throughput of the TCPN system. In particular, qualitative properties of the equilibrium
throughput such as monotonicity, continuity, and deadlock-freeness, as functions of the initial
marking, firing transitions rates, and net structure, are herein systematically analyzed.
The equilibrium throughput is:

• Monotonic, when increasing the initial marking and/or the transition firing rates leads
to a non-slower system (a desired behavior); that is, more or faster resources in the
system should at least not reduce the number of finished jobs per time unit;

• Continuous, when no abrupt changes of the equilibrium throughput are possible in
the system when firing rates and/or the initial marking vary (again a desired system
property);
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• Deadlock-free, when no blocking situation can occur in the system (this property can
be reinterpreted as “persistence” in chemical reaction networks [11]).

As a motivation, here, a cell composed of one input and one output stores of six slots
each, one conveyor belt, a computer numerical control (CNC) machine, and a robot is
presented. The cell is devoted to the manufacture of gears. The raw material resides in
the input store. The robot retrieves the raw material from the input store and places it
onto the conveyor. The conveyor is a two-site belt, and it leads the raw material into the
CNC machine, which fabricates gears. The robot unloads the machine when it finishes a
gear, and places the finished gear into the output store. Figure 1a shows a photo of this
manufacturing cell.

A TCPN model of the manufacturing cell is presented in Figure 1b, and the description
of places and transitions are presented in Tables 1 and 2, respectively. The firing of t1
indicates that a part arrives to the cell and it is stored in the input store. The firing of t2, t3
and t4 represent that a part is retrieved by the robot form the input store, deposited on
the conveyor, and loaded into the CNC machine, respectively. The unloading of the CNC
machine and the storing of a part in the output store are represented by the firing of t5 and
t6, respectively. Finally, t7 indicates that a part leaves the cell.

Table 1. Places and their description in the TCPN model of Figure 1b.

Place Description

Robot

p8 Robot is idle
p3 Robot retrieved a part from input store
p6 Robot unloaded a part from CNC machine

CNC machine

p11 CNC is idle
p5 CNC is processing a part

Input Store

p9 Free slots of the Input Store
p2 Stored parts in Input Store

Output Store

p12 Free slots of the Output Store
p7 Stored parts in Output Store

Conveyor

p10 Free sites in the conveyor
p4 Occupied sites on the conveyor

System capacity

p1 Number of jobs that can be processed in the system

Table 2. Transitions and their description in the TCPN model of Figure 1b.

Transition Description

t1 A part arrives to the cell and it is stored into the input store
t2 The robot retrieves a part from the input store
t3 The robot deposits a part onto the conveyor
t4 A part leaves the conveyor and is loaded into the CNC machine
t5 The robot unloads a finished part from the CNC machine
t6 The robot stores a part into the output store
t7 A part is retrieved from the output store and leaves the cell
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The net in Figure 1b is structurally bounded, i.e., for every initial marking, any reachable
marking maintains a limited number of tokens in every place. In this model, tokens in
place p1 represent the raw material, the firing of transition t2 represents the robot retrieving
a part from the input store, and the firing of transition t5 represents that the robot unloads
the machine.

(a) (b)

Figure 1. A manufacturing cell and its Petri net model. (a) Manufacturing cell. (b) Manufacturing
cell model.

With regard to the initial marking variation and how the qualitative properties
of the continuous equilibrium throughput varies, the considered initial marking is
m0 = [k1 0 0 0 0 0 0 1 6 2 1 6]T and the firing rate is fixed to λ = [1 2 1 1 1 1 1]T . In this case,
m0(p1) = k1 varies in the range [0, 7], leading to a variation in the equilibrium throughput,
which is depicted in Figure 2a. It shows that the equilibrium throughput is non-monotonic,
even non-continuous with respect to the marking variations. Figure 2a is obtained by
simulating the evolution of the piecewise linear system for several values of k1 from zero
to seven. The value of the equilibrium throughput is plotted for every value of k1.
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Figure 2. Equilibrium throughput of the Petri net model with respect to the initial marking and with
respect to the firing rates. (a) Initial marking variation k1. (b) Firing rate variation λ2.
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With regard to the firing rates variation and how the qualitative properties of the
equilibrium throughput varies, the initial marking is fixed to m0 = [10 0 0 0 0 0 0 1 6 2 1 6]T

and the firing rate is λ = [1 λ2 1 1 1 1 1]T . In this case, λ(t2) = λ2 varies in the range
[0, 4], leading to a variation in the equilibrium throughput, which is depicted in Figure 2b.
This second figure shows that the equilibrium throughput is non-monotonic, even non-
continuous with respect to the firing rate variations (there exists an abrupt change around
λ2 = 1). Figure 2b is obtained by simulating the evolution of the piecewise linear system for
several values of λ2 from zero to four. The value of the equilibrium throughput is plotted
for every value of λ2.

It is worth to notice that these non-monotonic, non-continuous behaviors are unde-
sirable. In both cases, increasing the number of resources or their speeds, the throughput
of the unforced system (i.e., non-controlled) is reduced to zero, that is, the manufacturing
system reaches a blocking situation. Moreover, these behavioral properties of TCPN sys-
tems are closely related to behavioral properties of discrete systems, even when the net is
structurally live (i.e., there exists initial markings that make the system live).

This example shows that the problem of non-monotonicity is originated when there
are several tokens in m0(p1) (increasing the system raw material) or λ(t2) is increased
(there is a faster resource), allowing that t2 fires more often than t5. This reduces to zero the
tokens in p8, p10, and p11; hence, t3 cannot be fired again and the TCPN is blocked.

Partially with a mix among a survey and tutorial style, this paper reviews in an in-
tegrated way efficient analysis techniques of some non frequently considered time-based
qualitative properties of TCPN systems under infinite server semantics, among others,
non-monotonicities and discontinuities on the equilibrium throughput (or marking). Fo-
cusing on the search of the net structural objects leading to such pathological/paradoxical
behaviors, in essence, the results are based on [4,10,12–16]. The idea is searching for
computational efficiency, while at the same time looking for a better understanding of
the potential connections among structure and behaviors (the latter also depend on the
initial marking). In order to approximate the sub-field to the practice, the present work
is complemented with some new algorithms. For instance, Algorithms 1 and 2 allow to
verify if a system is consistent and has not empty siphons at the initial marking; these are
two required conditions of practical systems. Algorithm 3 allows to classify the structural
objects (configurations) that determine the possible behaviors of the system. Algorithm 4
decides if a configuration can be activated to know the behaviors of the system.

This work deals with these undesired behaviors and their relation to the Petri net struc-
ture. Section 2 essentially provides the basic notation used. In Section 3, a discussion about
the jumps in the equilibrium throughput is addressed. Discontinuity-induced bifurcations,
earlier approached in [10,12], are here discussed, reviewing its relation to the net structure,
particularly with transitions in the net that allow to increase/decrease the marking of a
choice place. In Section 4, a homothecy property previously used for the analysis of CPN
systems [13] is recalled; it is taken to prove that discontinuity of the equilibrium throughput
implies its non-monotonicity. The relationships between these behaviors is provided for
both the firing rate variation and the initial marking variation. In Section 5, taking inspira-
tion from [4], undesired behaviors are related with net structural objects called problematic
configurations. These objects have associated subnets in which the places do not contain the
support of a P-semiflow. Finally, in Section 6, a set of reduction rules for simplifying the
computation of problematic configurations is intuitively recalled by means of trivial cases.
This procedure helps to practically diminish the complexity of the calculation, and more
importantly, provides useful insights of the root of undesired behaviors.

2. Basic Concepts and Notations

Let N,Q, and R represent natural, rational, and real numbers, respectively. Given a set
of numbers S, S≥0 (resp. S>0) denotes the set of nonnegative (resp. positive) numbers of S.
Given a matrix M of size |A| × |B| with A and B sets of indices, the submatrix M[A′, B′],
with A′ ⊂ A and B′ ⊂ B, denotes the restriction of M to rows indexed by A′ and columns
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indexed by B′. The support of a vector z is the set of indices corresponding to its non null
values and is denoted by ‖z‖.

2.1. Petri Net Structure and System

Definition 1. A Petri net structure is a bipartite digraph defined by the four tuple
N = 〈P, T, Pre, Post〉, where P 6= ∅ and T 6= ∅ are finite non-empty disjoint sets of nodes named
places and transitions, respectively, and Pre : P× T → N ∪ {0} (Post : P× T → N ∪ {0})
is the pre-incidence function specifying the weighted arcs directed from places to transitions
(post-incidence function that specifies the weighted arcs directed from transitions to places).

A subnet of N, N′ = 〈P′, T′, Pre′, Post′〉, is a Petri net structure where P′ ⊆ P,
T′ ⊆ T are subsets of places and transitions of N, respectively; and Pre′ = Pre[P′, T′]
and Post′ = Post[P′, T′] are the pre- and post-incidence functions of N restricted to P′

and T′. The preset and postset of a node v ∈ P ∪ T are denoted as •v (set of input nodes)
and v• (set of output nodes), respectively. These definitions can be naturally extended: let
V ⊂ P ∪ T be a set of nodes, while •V (respectively, V•) denotes the union of the preset
(respectively, of the postset) of every node v ∈ V. A siphon is a set of places Σ ⊆ P such
that •Σ ⊆ Σ•.

The token-flow matrix (incidence matrix if the net is self-loop free) of a net N is defined as
C = Post − Pre. A transition ti with more than one input place (i.e., |•ti| > 1) is named
a join transition; a place pj with more than one output transition (i.e., |p•j | > 1) is named

a choice place. A column vector y 6= 0 is called a P-flow of N if yTC = 0; if the non-null
entries of such vector are positive, then it is called a P-semiflow. A basis of the left kernel of
C is a basis of P-flows and is denoted by By, so that BT

y C = 0. Similarly, a column vector
x 6= 0 is termed a T-flow of N if Cx = 0; if the non-null entries of that vector are positive,
then it is termed a T-semiflow. If there is a P-semiflow (T-semiflow) such that y > 0 (x > 0),
the net is said to be conservative (consistent), denoted as Cv (Ct).

Definition 2. A net N is Mono-T-Semiflow (MTS) if it is conservative and consistent with a
unique minimal (defined in the naturals, and least common multiple equals one) T-semiflow.

2.2. Fluid or Continuous Petri Net System

A marking is a mapping m : P→ R|P|≥0 that assigns to each place of N a non-negative
real value.

Definition 3. A fluid or continuous Petri net (CPN) system is a net N together with an initial
marking m0, and it is denoted as 〈N, m0〉.

One characteristic of continuous Petri net systems is their evolution rule. It allows
the firing of transitions in positive real amounts, while the reachable markings of the
continuous system must be non-negative real values.

The enabling degree of a transition t at a marking m is defined as:

enab[t] = min
∀p∈•t

{
m[p]

Pre[p, t]

}
. (1)

A transition t ∈ T is enabled if enab[t] > 0. An enabled transition can be fired in
any real amount inside the interval 0 ≤ δ ≤ enab[t]. Its firing leads to a new marking
m′ = m + δC[P, t]. A marking m is lim-reachable from m0 if there exists a (finite or infinite)
firing sequence σ, such that m can be reached from m0, which is denoted as m0[σ〉m.
A transition t is called dead if its enabling degree is zero (enab[t] = 0) for every reachable
marking. The set of reachable markings, denoted as RS(N, m0), satisfy the following
fundamental equation:

m = m0 + Cσ, (2)
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where σ ∈ R|T|≥0 is the firing count vector of the sequence σ such that m0[σ〉m.
Regarding Equation (2) and the P-flows of a net N, a token conservation law associated

with a P-flow y is described by the equation yTm = yTm0. This last equation is obtained
by pre-multiplying Equation (2) by yT .

Proposition 1 ([6,7]). Let 〈N, m0〉 be a CPN system. If there is no empty siphon at m0 and the
net is consistent (not a real constraint in practical systems), then the following are equivalent:

1. The set of reachable markings;
2. The set of solutions of Equation (2), where σ ≥ 0, m ≥ 0;
3. The set of solutions of equation BT

y m = BT
y m0, where m ≥ 0.

In this work, it is assumed that every system 〈N, m0〉 fulfils the previous condition:
there is no empty siphon at m0 and the net is consistent. If that is not the case, the places
associated with the empty siphon, together with their output transitions, can be removed
from the net because they never evolve.

In the case of continuous Petri net systems, the condition that there is not empty
siphon at m0 is equivalent to not having dead transitions in the CPN system.

Property 1. Let 〈N, m0〉 be a consistent CPN system. There are no empty siphons at m0 iff there
are no dead transitions at m0.

Proof. (Sufficiency) If there are not dead transitions at m0, then every transition in T can
be fired at least once. Choose an arbitrary place p in an arbitrary siphon Σ; if p is marked
at m0, then the siphon Σ is marked at m0. If p is not marked at m0, then there should be a
transition t ∈ •p that can be fired, which means that all the places in •t are marked; thus,
the siphon Σ is marked at m0. If that is not the case, this reasoning can be done upwards to
find the place that marks the siphon, because every transition can be fired at least once.

(Necessity) If there are no empty siphons at m0, then it is possible firing the enabled
transitions (maybe in fractions of the enabling degree), so that new transitions are enabled
maintaining the previous transitions enabled, which can be done until every place p ∈ P is
marked. Thus, every transition t ∈ T can be fired.

As a remark, the above property does not hold in both ways for discrete Petri nets.
It is true that if there are not dead transitions at m0, then there are no empty siphons at
m0. However, the converse is not true. Figure 3 shows a consistent Petri net with an initial
marking: if considered as discrete, transition t5 cannot be fired (it is a dead transition);
however, there is no empty siphon at the initial marking. If considered as continuous,
transition t5 can be fired after firing transitions t1 and t2 by half its enabling degree.

Figure 3. Consistent Petri net with no empty siphons. Transition t5 is dead as discrete, but fireable
as continuous.

Now, two algorithms are provided to evaluate the conditions: there is no empty siphon
at m0 and the net is consistent.
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Based on the results of [17], the Algorithm 1 determines if the net is consistent and
has no dead transitions, which is equivalent to not having empty siphons in continuous
Petri nets (Property 1). It computes if there is a T-semiflow x ≥ 1 involving all transitions
of the net N (line 2). If it exists, then it continues computing the set of enabled transitions
at m0 (line 8). Then, those transitions are fired with half their enabling degree (line 11)
and the set of enabled transitions are computed again for the new marking (line 12). This
procedure is repeated until the set of enabled transitions is T (there are no dead transitions)
or the set does not grow anymore (there are dead transitions). The algorithm runs in
polynomial time.

Algorithm 1 Computing if the net is consistent and there are no empty siphons at m0.

Require: 〈N, m0〉.
Ensure: If N is consistent and there are no empty siphons

1: Compute the token-flow matrix C = Post− Pre
2: Compute the existence of a positive T-semiflow
P1 : {Find x ≥ 1 s.t. Cx = 0}

3: if P1 has no solution then
4: N is not consistent
5: else
6: N is consistent
7: T0 := ∅
8: T1 := {t|enab(t, m0) > 0}
9: j := 1

10: while T j 6= T and T j 6= T j−1 do
11: Let σj be a sequence obtained firing all the transitions in T j\T j−1 with half their

enabling degree, and let mj := mj−1 + Cσj

12: T j+1 := {t|enab(t, mj) > 0}
13: j := j + 1
14: end while
15: if T j = T then
16: There are no empty siphons at m0
17: else
18: There are empty siphons at m0
19: end if
20: end if

Following the ideas in [2], another algorithm can be proposed to evaluate if there exists
empty siphons at the initial marking. It consists of a linear algebraic method to obtain a
generating family of siphons. Theorem 13 in [2] characterizes traps in terms of non-negative
solutions to a linear of system inequalities. Siphons can be characterized in the same way
by reversing the net. That theorem is now rewritten for siphons:

Theorem 1 ([2]). Let N = 〈P, T, Pre, Post〉 be a Petri net. Define:

NΣ = 〈P, T, PreΣ, Post〉

such that PreΣ[p, t] = 0 if Pre[p, t] = 0, and PreΣ[p, t] = Σp′∈t•Post[p′, t] otherwise.
A set Σ ⊆ P is a siphon of N iff y ≥ 0 exists such that ‖y‖ = Σ and yTCΣ ≤ 0.

Algorithm 2 decides if the net is consistent and there are no empty siphons at m0.
For this second condition, it computes a generating family of siphons for N. Then, it
evaluates if there is an empty siphon at the initial marking.
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Algorithm 2 Computing if the net is consistent and there are no empty siphons at m0.

Require: 〈N, m0〉.
Ensure: If N is consistent and there are no empty siphons

1: Compute the token-flow matrix C = Post− Pre
2: Compute the existence of a positive T-semiflow
P2−1 : {Find x ≥ 1 s.t. Cx = 0}

3: if P2−1 has no solution then
4: N is not consistent
5: else
6: N is consistent
7: Construct NΣ for N as in Theorem 1
8: Find an unmarked siphon:

P2−2 :
{

Find y ≥ 0 s.t. yTCΣ ≤ 0∧ yTm0 = 0
}

9: if P2−2 has a solution then
10: There is at least one empty siphon at m0
11: else
12: There are no empty siphons at m0
13: end if
14: end if

2.3. Timed Continuous Petri Net Systems

If the firing of transitions is timed, the marking of the continuous system evolves
deterministically along a trajectory within the set of reachable markings. In this sense,
Equation (2) depends explicitly on time (that is, m(τ) = m0 + Cσ(τ)), and its time deriva-
tive gives the state equation:

ṁ(τ) = Cσ̇(τ), m(0) = m0. (3)

The derivative of the firing count vector is known as the firing flow or throughput vector
of the timed model f (τ) = σ̇(τ). As already pointed out, in this work, the firing flow is
defined using the infinite servers semantics [6,7]:

f [tj] = λ[tj] min
∀p∈•tj

{
m[p]

Pre[p, tj]

}
, (4)

where λ : T → Q|T|>0 is a mapping known as the firing rate vector, which assigns to each
transition of N a positive real value.

The firing flow represents the number of transition firings per unit time, i.e., the
throughput of the transition. Given a net structure, according to previous equation, it
depends on two sets of parameters that may be tuned: the firing rate vector λ and the
current marking m. Defined by Pre[p, tj] and Post[p, tj], the structure of the net plays a key
role in the possible evolution of the flow, being able to introduce undesirable behaviors
(such as non-monotonicity in the equilibrium throughput). In Section 5, structural objects
denoted as problematic configurations are used to explain these undesirable behaviors.
Notice that both λ and m directly affect the flow, so it suggests a “kind of duality”. However,
this duality is a weak one, since λ is a fixed timed net parameter, while m is changing during
the net system evolution. The following sections show the scope of such a duality.

Definition 4. A timed continuous Petri net (TCPN) system is a CPN system together with a
firing rate vector λ and it is denoted as 〈N, λ, m0〉.

Due to the min operator in Equation (4) and the token conservation laws, the marking
evolution of a TCPN system can be represented by an affine positive piecewise linear system [6].
The following concepts are useful to study their structure and behaviors:
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1. A configuration C of a net N is a set of (p, t) arcs, only one per each transition, such that
p ∈ •t. The T-coverture of a configuration C is TC = {p | ∀t ∈ T, (p, t) ∈ C}, i.e., the
places preceding the arcs of C.

2. A configuration C has associated a configuration matrix ΠC ∈ Q
|T|×|P|
≥0 where:

ΠC [tj, pi] =


1

Pre[pi, tj]
if (pi, tj) ∈ C

0 otherwise.
(5)

A configuration C is active at marking m if ΠCm = enab(m) (i.e., if their arcs are
constraining the flow of transitions).

3. A region RC is a (sub)state space in which a unique configuration C is active. Re-
gions constitute a partition—except on the borders—of the full polytope (possibly
unbounded) of reachable markings.

4. The associated net of a configuration C is defined as the subnet NC = (TC ,T •C , Pre′, Post′).
5. An operation mode or regime ΣC of a TCPN system is the linear system (ṁ = CΛΠCm,

where Λ = diag(λ) is a diagonal matrix) which describes the marking evolution, while
m evolves within regionRC . At configuration C, CΛΠC is the dynamic matrix.

The set of all configurations of a net N is represented as SC(N), its number being
bounded by Πi|•ti|. Therefore, a net may contain an exponential number of configura-
tions. As a notation, Ci1, ..., i|T| is a configuration where (pik , tk) ∈ Ci1, ..., i|T| . Figure 1b has
Πi|•ti| = 2× 2× 2× 2× 2× 2× 1 = 64 different configurations. In Figure 4, we are
depicting the induced subnets by four of them.

Figure 4. Induced nets associated with 4 of the 64 configurations of the net depicted in Figure 1b.

The dynamic behavior of a TCPN system can be described by the following equations:

ṁ = CΛΠCm, m ∈ RC , C ∈ SC(N)

m(0) = m0.
(6)

Configurations and T-covertures are sets related with the structure of the net N. Both
structural objects allow to address some analysis of the system and are key for the results
presented in upcoming sections. They are also related to the regions of the CPN system
〈N, m0〉 and to the operation modes of the TCPN system 〈N, λ, m0〉.

An equilibrium marking me ∈ RC is a state of the TCPN system fulfilling
ṁ = CΛΠCme = 0; its corresponding equilibrium throughput is denoted by f e = ΛΠCme.
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Note that Λ ≥ 0, ΠC ≥ 0 and me ≥ 0, and thus, f e ≥ 0, and it is a non-negative linear
combination of the T-semiflows of the net, no matter which configuration is activated by
me.

2.4. Mono-T-Semiflow Nets and Performance Properties Relationships

The equilibrium throughput, in the case of MTS systems, is proportional to the unique
T-semiflow of the net. Thus, it can be expressed as:

f e = ΛΠCme = αx,

where x is the T-semiflow of the net and α(N, λ, m0) is a scalar function. In other words,
the equilibrium throughput is of the form f e(N, λ, m0).

The dynamic behavior of a TCPN system is described by Equations (4) and (6).
From them, it can be directly derived that, since the dynamic behavior of a TCPN system
can be described by Equation (6)—the marking evolution of 〈N, λ, m0〉 is the solution to
that initial value problem—the following well known homothecy properties are dynamically
satisfied [6]:

• If m0 is multiplied by a constant k > 0, the reachable markings are multiplied by k
and the firing flow will also be k times bigger (or smaller if k < 1).

• If λ is multiplied by a constant k > 0, then identical markings will be reached, but the
system will evolve k times faster (or slower if k < 1).

We emphasize that in both cases, the whole m0 and λ are multiplied by k. However,
when the value of only one entry of these vectors varies, then the equilibrium throughput
could exhibit paradoxical behaviors. This case is analyzed in this work.

3. Bifurcations: Operation Mode Properties

The equilibrium throughput f e = ΛΠCme depends on the transition firing rate Λ,
the structure of the net ΠC , and the equilibrium marking me. Now, we illustrate how the
behavior of the equilibrium marking of ṁ = CΛΠCm changes in a given region when the
transition speed (firing rate or throughput of the machines) varies. In order to do that,
a similarity transformation is used to split CΛΠC into the non-zero and zero eigenvalue
parts. It easily shows how bifurcations are generated. These concepts are illustrated
through examples. Finally, a discussion for a subclass of nets is addressed.

3.1. A Transformation for the Bifurcation Analysis

Unfortunately, as mentioned before, varying the production throughput of machines
may lead to paradoxical throughput behaviors of the system, in which the increment of
speed of machines or system resources leads to the decrease of the system throughput or
abrupt changes of it, even leading to deadlocks. This can be explained using bifurcations.

A bifurcation of an equilibrium marking takes place when a change of the system
parameters produces a change of the qualitative behavior of the equilibrium marking (see
references [14,18] for technical details). For instance, due to the variation of a firing rate
(a parameter of the dynamic matrices of a TCPN system), the equilibrium marking can
pass from stable to unstable. This can be verified using the eigenvalues of the dynamic
matrices CΛΠC and observing their relocation from the left half complex plane to the right
half complex plane.

The conservation marking laws imposed by the P-flows fix some eigenvalues to zero,
making them independent from firing rate variations. Thus, the equilibrium marking
bifurcation analysis may be performed on a reduced matrix, where the zero eigenvalues are
not considered. This can be easily done by using the following similarity transformation [14]:

T =

[
T1

By
T

]
, (7)
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where By is a matrix composed of a basis of the P-flows and T1 is an adequate matrix, such
that T is invertible, and T−1 =

[
z1 zy

]
.

Hence, the coordinate change is m̄ = Tm and the marking derivative in the new
coordinates is:

˙̄m = TCΛΠkT−1m̄,

and can be decomposed as:[
˙̄m1
˙̄my

]
=

[
T1CΛΠkz1 T1CΛΠkzy

0 0

][
m̄1
m̄y

]
. (8)

According to this transformation, the eigenvalues of T1CΛΠkz1 are those of CΛΠk
not associated with the P-flows. Now, this reduced system T1CΛΠkz1 is used to study if a
loss of hyperbolicity occurs by varying the firing rates λ. The following definition provides
a formal statement of these concepts.

Definition 5 ([14]). An equilibrium marking, me ∈ RC , is said to be hyperbolic if none of the
eigenvalues of the dynamic matrix CΛΠC lie on the imaginary axis. The equilibrium marking
bifurcates when, due to varying a parameter λ[tj] = λj, it loses hyperbolicity.

Varying the firing rates of transitions, it is possible to change the eigenvalues of
T1CΛΠkz1. If the system loss hyperbolicity, a change in the qualitative behavior of the
system occurs.

For instance, if the marking of a TCPN system is evolving in a region in which all the
eigenvalues of the dynamic matrix (different from the associated with P-semiflows) have a
negative real part, the marking will reach zero if it evolves in the same region, reaching
a deadlock in the system. A slight variation of the firing rates can change this behavior,
so that one of the eigenvalues relies on the imaginary axis. The marking evolving in such
region cannot reach zero, thus the equilibrium throughput of the system will be different
from zero. Moreover, that slight variation can change one of the eigenvalues, so that its
real part is positive. The marking evolving in such a region will increase its value until
it reaches another region (if the system is bounded). This is why we can see jumps in the
equilibrium throughput due to the firing rate variations.

3.2. Bifurcations in a Manufacturing TCPN Model

Let us introduce intuitively the idea of bifurcation. There can exist path losing/gaining
marks when considering a subnet associated with an operation mode. For instance,
the places of the subnet in Figure 5a lose markings if t2 is fired, while their marking
is increased by firing t5, t4, and t3, in that order. As mentioned in Section 2, every op-
eration mode of a TCPN is a linear system ṁ = CΛΠCm. Depending on the existence
of path losing/gaining marks, the firing rates of transitions may be changed to obtain a
stable/unstable linear system. For example, considering the net depicted in Figure 1b, one
of its configurations, its associated subnet, and its dynamic matrix are depicted in Figure 5.

The dynamic matrix of the operation mode associated with the configuration is AC = CΛΠC
and it is depicted in Figure 5b, where λ(t2) = λ2 is considered as a parameter. Notice that
in the subnet shown in Figure 5a, for example, the total marking is decremented by the
firing of t2 and increased by the firing of t5. In the following lines, we explain how this
phenomenon is captured by AC .
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(a) (b)

Figure 5. Subnet of configuration C1,8,10,11,8,6,7 of the TCPN model of Figure 1b and the dynamic
matrix of its associated operation mode. (a) Subnet. (b) Dynamic Matrix.

Matrix AC has six eigenvalues associated with a basis of P-flows of the net (in this
particular case, they are P-semiflows of the net). Of course, all these are independent from
λ2 and are equal to zero. A similarity transformation T to obtain a transformed matrix
TACT−1 for the analysis of the remaining eigenvalues is the following. Note that the last
six rows are (transposed) minimal P-semiflows of the net.

T =

[
I6 06
BT

y

]
=



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
− − − − − − − − − − − −
0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 0



TACT−1 =



−2 −1 −1 −1 −1 −1 0 0 0 0 0 1
1 0 λ2 0 0 λ2 0 0 0 −λ2 0 0
0 0 −λ2 1 0 −λ2 0 −1 0 λ2 0 0
0 0 0 −1 1 0 0 1 −1 0 0 0
0 0 1 0 −1 1 0 0 1 −1 0 0
0 0 −1 0 0 −2 0 0 0 1 0 0
− − − − − − − − − − − −
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


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In order to obtain the eigenvalues of the transformed matrix, the characteristic polyno-
mial of TACT−1 is obtained:

P(s) = s6(s6 + (λ2 + 6)s5 + (5λ2 + 14)s4 + (10λ2 + 15)s3 + (10λ2 + 6)s2 + (5λ2 − 1)s + (λ2 − 1))

The eigenvalues of the transformed matrix are the roots of P(s). Obviously, the trans-
formed matrix has six eigenvalues equal to zero (s = 0), as expected, and they do not
depend on λ2. Moreover, P(s) can be factorized as follows:

P(s) = s6(s + 1)3(s3 + (λ2 + 3)s2 + (2λ2 + 2)s + λ2 − 1).

Hence, there are three other eigenvalues that do not depend on λ2, and they have
the same value s = −1. One of these eigenvalues is due to the firing rate of transition t1
(λ1 = 1), which determines the velocity of the marking evolution of p1. In the same way,
the firing rate of transition t7 (λ7 = 1) gives another eigenvalue in s = −λ7 = −1.

The other three non-zero eigenvalues depend on the parameter λ2 (the speed of
retrieving a part). In Figure 6, the variation of these three last eigenvalues is depicted. In this
case, λ2 ∈ (0, 10]. The starting roots (when λ2 = 0) are represented by symbol ‘X’, while the
endings (when λ2 = 10) are represented by symbol ‘O’. If we increase λ2 indefinitely, that
is λ2 → ∞, one of the eigenvalues will increase (s→ −∞) indefinitely, and the other two
will tend to s = −1 (this is obtained dividing s3 + (λ2 + 3)s2 + (2λ2 + 2)s + λ2 − 1 = 0 by
λ2 and obtaining the limit when λ2 → ∞). Notice that:

• If λ2 < 1, the equilibrium marking is hyperbolic (eigenvalues are not on the imaginary
axis), and there exists one eigenvalue of AC located in the right part of the complex
plane, that is, the equilibrium marking of the reduced system is unstable within that
region. The marking of the T-coverture increases until it reaches another region,
activating another configuration.

• If λ2 = 1, then the previous eigenvalue on the right part of the complex plane is
relocated to the imaginary axis of the complex plane (a new zero eigenvalue); thus,
the reduced system is non-hyperbolic and, in this case, critically stable.

• If λ2 > 1, then the eigenvalue goes to the left part of complex plane, and thus, the
equilibrium marking becomes hyperbolic and stable, and the marking of the reduced
system evolves until it reaches a deadlock.

Figure 6. Location of three of the eigenvalues of matrix AC on the complex plane when λ2 is varied
from zero to ten. When λ2 is close to zero, the eigenvalues are located on the ‘X’ symbol. By increasing
λ2, the eigenvalues move through the blue line until they reach the ‘O’ symbol, where the value of λ2

is ten.
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Consequently, a bifurcation occurs for λ2 = 1. According to [12], this marking bifurca-
tion explains the discontinuity of the equilibrium throughput with respect to the firing rate
t2, which can be seen in Figure 2b.

3.3. Bifurcations in Timed Join Free and Choice Free Nets

In a Join Free TCPN (JF TCPN), every transition has only one input place (∀t ∈ T,
|•t| = 1); thus, JF TCPNs have only one configuration. In a Choice Free TCPN (CF TCPN),
every place has only one output transition (∀p ∈ P, |p•| = 1); thus, CF TCPNs have
no decision places. If the net is Join-Free (JF) or Choice-Free (CF), bifurcations of the
equilibrium marking cannot occur in the TCPN system when the nets are consistent and
conservative [14].

Bifurcations of the equilibrium marking in strongly connected JF TCPN systems may
appear due to the variation of some firing rates. As already said, that will be reflected in the
eigenvalues of its unique dynamic matrix CΛΠ. Let us illustrate this through the following
example, in which the equilibrium marking of the system changes from being unstable
to stable.

Example 1. Consider the JF TCPN in Figure 7a with λ =
[
λ1 1 1 1

]T and m0 =
[
10 0 0

]T.
It is strongly connected and consistent, but non-conservative (in fact, it has no P-semiflows). Its
unique dynamic matrix is:

A = CΛΠ =

−λ1 − 1 0.5 2
λ1 −1 0
1 0 −1

.

• If 0 < λ1 < 2, then A is a full rank matrix, so none of its eigenvalues rely on the imaginary
axis (i.e., the only equilibrium marking, me = 0, is hyperbolic). In this case, one of them has a
positive real part; thus, me is unstable.

• If λ1 = 2, then A is singular, and one of its eigenvalues is zero. That is, the equilibrium

marking (me = β
[
1 2 1

]T , with β ≥ 0) is non-hyperbolic.
• If λ1 > 2, then A is a full rank matrix, so me = 0 is hyperbolic. Specifically, all the eigenvalues

have a negative real part; me is stable.

Consequently, a bifurcation occurs for λ1 = 2.

2222 2

2

2 2 2

(a) Consistent, but not conservative (b) Consistent and conservative (c) Non consistent and non conservative

Figure 7. Three strongly connected JF Petri nets: (a) its TCPN system exhibits bifurcations; (b,c): their
TCPN systems do not exhibit bifurcations.

Nevertheless, if the JF TCPN is conservative, a bifurcation of the equilibrium markings
is not possible. It follows from the fact that it cannot have closed paths gaining/losing tokens.

Proposition 2 ([14]). Let (N, λ, m0) be a strongly connected JF TCPN system. If N has a
P-semiflow, then the equilibrium markings of the system do not bifurcate.

The equilibrium markings of the TCPN system (N, λ, m0) for the net in Figure 7b do
not bifurcate, because N is consistent and conservative (therefore, structurally live).
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The converse of Proposition 2 is not true; consider the net in Figure 7c. For every
λ > 0 the dynamic matrix of the TCPN system, A = CΛΠ, has only eigenvalues with a
negative real part. Therefore, me = 0 is always hyperbolic; thus, there is no bifurcation
value for any λ > 0, and the net has no P-semiflow.

When the assumption of strongly connectedness is removed in Proposition 2, N must
be conservative to guarantee that the equilibrium markings of the reduced subsystem do
not bifurcate. This is because if N is not strongly connected and conservative, then it should
be not consistent (this is a classical result: Ct & Cv imply strongly connectedness of the
net [2]). Hence, the net is not structurally live, which guarantees that the eigenvalues of the
reduced system are in the left half of the complex plane.

Similarly, strongly connected (and thereby conservative) CF TCPN do not exhibit
bifucations. The next proposition formalizes this fact.

Proposition 3 ([14]). Let (N, λ, m0) be a strongly connected CF TCPN system. If N has a
T-semiflow, then the equilibrium markings of the system do not bifurcate.

Bifurcations, as well as deadlocks (reviewed in the following sections), are not possible
in CF and JF TCPN, which are consistent and conservative. This relationship is due to the
fact that P-semiflows are contained in the places associated with every configuration of
the net.

4. Discontinuities and Non-Monotonicities

Section 3 illustrated the fact that bifurcations are the responsible of discontinuities in
the equilibrium marking when the firing rates varies. In fact, here we focus on the idea that
discontinuities imply non-monotonicities. Based on the homothecy property, it is shown
how a discontinuity in the equilibrium throughput implies a non-monotonicity, either with
respect to a firing rate or initial marking variations.

4.1. The Firing Rate Variation Case

In order to provide a formal definition of discontinuities and non-monotonicities,
some definitions are given. They capture possible equilibrium throughput changes when
the firing rates vary. In the following properties of the equilibrium throughput, the initial
marking m0 is fixed and the firing speed of transitions λ varies. Some kind of “dual”
properties, fixing λ and varying m0 can be established [15].

Definition 6. Let 〈N, λ, m0〉 be a TCPN system with m0 fixed. Assume that the firing rate vector
λ is arbitrary. Its equilibrium throughput is:

• Monotonic with respect to the firing rates, denoted as M(λ), if ∀(λ, λ′), λ ≤ λ′ =⇒
α(λ) ≤ α(λ′);

• Deadlock-free monotonic with respect to the firing rates, denoted as DFM(λ), if ∀(λ, λ′)
with λ ≤ λ′, α(λ) > 0 =⇒ α(λ′) > 0,

• Continuous with respect to the firing rates, denoted as C(λ), if for every λ, given ε > 0,
there is δ > 0, such that ‖λ− λ′‖2 < δ =⇒ ‖α(λ)− α(λ′)‖2 < ε, where ‖·‖2 is the
euclidean norm.

The following example shows a firing rate variation in an MTS-TCPN, which leads to
discontinuous changes in the equilibrium throughput, similar to the discontinuous change
observed in Figure 2b. Then, it is illustrated how a discontinuous change implies non-
monotonicity. In order to simplify the explanation, the apparently simple TCPN system of
Figure 8 with only four configurations is used. The configurations of this net are: C1,1, C2,1,
C1,3, and C2,3. The same property can be observed for the net model in Figure 1b; however,
for the sake of simplicity, it is not used in this case.
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(a) (b) (c)

Figure 8. An MTS net, its equilibrium throughput when λ2 varies (Figure 8b), and its equilibrium
throughput when λ1 varies (Figure 8c). Note that the first one is monotone and the last one is non-
monotone. (a) An MTS net. The firing of t1 reduces the tokens in p1, while the firing of t2 increases its
value. (b) Equilibrium throughput with respect to λ2 of the net system in Figure 8a. (c) Equilibrium
throughput with respect to λ′1 constructed using the time-scale property. A non-monotonicity is
discovered from a discontinuity in the equilibrium throughput.

Consider the MTS net in Figure 8a with an initial marking m0 =
[
10 9 0

]T and

firing rates λ =
[
1 λ2

]T , where λ2 is taken as a variation parameter. The net has two

minimal P-semiflows y1 =
[
1 0 1

]T and y2 =
[
0 1 1

]T (hence, m1 + m3 = 10 and

m2 + m3 = 9) and only one minimal T-semiflow x =
[
1 1

]T .
Since the net is an MTS-TCPN, the equilibrium throughput of the system is

f e = ΛΠCme = αx. Table 3 shows the value of the equilibrium throughput, for some
intervals of λ2, in which a discontinuity of the equilibrium throughput is observed.

Table 3. Equilibrium throughput w.r.t. λ2 and its characteristics of the MTS net depicted in Figure 8a.

Equilibrium Throughput w.r.t. λ2

λ2 Interval Equilibrium
Throughput f e

me Activates
Configuration:

me Belongs to
Region:

0 < λ2 < 0.5 α =
λ2

1− λ2
C21 = (p2, t1), (p1, t2) R21

λ2 = 0.5 α = 2.5 C11 = (p1, t1), (p1, t2) and
C13 = (p1, t1), (p3, t2)

R11 ∩R13

λ2 > 0.5 α =
10λ2

1 + 2λ2
C13 = (p1, t1), (p3, t2) R13

In this case, the discontinuity can be explained due to the bifurcation that occurs
when λ2 = 0.5. The linear system which determines the marking evolution when place p1
restricts the firing of t1 and t2 is: unstable if λ2 < 0.5; critically stable if λ2 = 0.5; and stable
if λ2 > 0.5. The loss of hyperbolicity in this case (bifurcation) produces a discontinuity in
the equilibrium throughput.

Despite the discontinuity at λ2 = 0.5, Figure 8b shows that the equilibrium throughput
is monotone with respect to λ2 variations. In order to show the non-monotonicity of this
system, the equilibrium throughput, when λ1 varies, is obtained using λ2 as a parameter
and the homothecy properties. Now, the equilibrium throughput f ′e is computed for the
above TCPN as a function of f e when λ′ = kλ and k = 1/λ2.

Let us use the previous calculations of the TCPN system in Figure 8b. Consider point
A′ in Figure 9; it is in the line that represents vector λ =

[
1 λ2

]T for interval 0 < λ2 < 0.5;

the equilibrium throughput f e = αA′x for this interval is described by αA′ =
λ2

1− λ2
. Now

consider point A is on the line that represents vector λ′ =
[
λ′1 λ′2

]T
=

[
1

λ2
1
]T

= kλ,
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where k =
1

λ2
, for the interval λ′1 > 2. Hence, now the equilibrium throughput is described

by αA = kαA′ =
1

1− λ2
=

1
1− 1

λ′1

=
λ′1

λ′1 − 1
.
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Figure 9. Plane λ1 − λ2. The firing rate vector when λ2 is varied (i.e., λ = [1 λ2]
T) is composed of the

points in line A’B’; its corresponding equilibrium throughput is shown in Figure 8b. Multiplying such
a vector by k = 1

λ2
results in λ′ = [ 1

λ2
1]T , a vector described by the points in line BA; its equilibrium

throughput is depicted in Figure 8c.

The other two intervals can be determined in the same way. For λ2 = 0.5 it is obvious,
and for 0.5 < λ2, points B and B′ are used. The equilibrium throughput of the system
under variation of λ′1, f ′e = α′x, is represented in Table 4.

Table 4. Equilibrium throughput w.r.t. λ1 and its characteristics of the MTS net depicted in Figure 8a.

Equilibrium Throughput w.r.t. λ1

λ′1 Interval Equilibrium
Throughput f ′e

me Activates
Configuration:

me Belongs to
Region:

0 < λ′1 < 2 α′ =
10λ′1

2 + λ′1

C13 = (p1, t1), (p3, t2) R13

λ′1 = 2 α′ = 5 C11 = (p1, t1), (p1, t2) and
C13 = (p1, t1), (p3, t2)

R11 ∩R13

λ′1 > 2 α′ =
λ′1

λ′1 − 1
C21 = (p2, t1), (p1, t2) R21

This is depicted in Figure 8c, and a cached non-monotonicity (or decreasing) of the
equilibrium throughput is now observed (there is a jump from a higher value f ′e = 5x to a
lower one f ′e = 2x in the discontinuity value).

Notice that the reasoning used in previous example can be generalized to any TCPN,
when a discontinuity in its equilibrium throughput appears due to the variation of a firing
rate λi: the system throughput is non-monotonic with respect to λ. This is formalized in
the following theorem (written in the contrapositive form).

Theorem 2 ([14]). Let 〈N, λ, m0〉 be an MTS TCPN system with m0 fixed and λ arbitrary. If the
equilibrium throughput is monotonic with respect to λ, then it is continuous with respect to λ.
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The upper part of the diagram of Figure 10 shows the relations among continuity,
monotonicity, and deadlock-free monotonicity. The left side, implication (a), is Theorem 2.
Focusing on the right side and taking into account Definition 6, a monotonic system never
decreases its system throughput when the firing rates are increased, thus it cannot be zero.
Hence, the system should be deadlock-free monotonic (arrow (b)), which is formalized in
the next statement.

  

Figure 10. Relationships between configurations and behavioral properties. Continuity, monotonicity,
and deadlock-free monotonicity w.r.t. the firing rates are abbreviated as C(λ), M(λ), and DFM(λ),
respectively. In the same way, continuity, monotonicity, and deadlock-free monotonicity w.r.t. the
initial marking are abbreviated as C(m0), M(m0), and DFM(m0), respectively. Abbreviations nB and
B stand for nB-Problematic systems and B-Problematic systems, respectively.

Proposition 4. Let 〈N, λ, m0〉 be an MTS TCPN system with m0 fixed and λ arbitrary. If the
equilibrium throughput is monotonic with respect to λ, then it is deadlock-free monotonic with
respect to λ.

Proof. It derives directly from Definition 6.

The reverse of implications (a) and (b) in Figure 10 are not true, an example of this can
be found in Figure 2 of [15]. Moreover, another example is approached in Section 5.

4.2. A “Dual” Perspective: The Initial Marking Variation Case

In this case, formal definitions for discontinuities and non-monotonicities are given
taking now the initial marking as a parameter. More precisely, these equilibrium throughput
behaviors are defined when λ is fixed and m0 varies.

Definition 7. Let 〈N, λ, m0〉 be an MTS TCPN system with λ fixed. Assume that the initial
marking m0 is arbitrary. Its equilibrium throughput is:

• Monotonic with respect to the initial marking, denoted as M(m0), if ∀(m0, m′0), m0 ≤
m′0 =⇒ α(m0) ≤ α(m′0);

• Deadlock-free monotonic with respect to the initial marking, denoted as DFM(m0),
if ∀(m0, m′0) with m0 ≤ m′0, α(m0) > 0 =⇒ α(m′0) > 0;

• Continuous with respect to the initial marking, denoted as C(m0), if for every m0, given
ε > 0, there is δ > 0 such that ‖m0 −m′0‖2 < δ =⇒ ‖α(m0)− α(m′0)‖2 < ε, where ‖·‖2
is the euclidean norm.

A discontinuity of the equilibrium throughput due to smooth variations of the initial
marking can occur, as can be seen in Figure 2a. A similar procedure to the previous one,
for the analysis of this behavior with respect to the initial marking variations, can be carried
out using the homothecy property to obtain the following result (arrow (c) in Figure 10).
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Theorem 3 ([15]). Let 〈N, λ, m0〉 be an MTS TCPN system with λ fixed and m0 arbitrary. If the
equilibrium throughput is monotonic with respect to m0, then it is continuous with respect to m0.

Furthermore, directly derived from Definition 7, a monotonic system never decreases
its system throughput when the initial markings are increased, thus its throughput cannot
be zero. Hence, the system is also deadlock-free monotonic (arrow (d) in Figure 10).

Proposition 5. Let 〈N, λ, m0〉 be an MTS TCPN system with λ fixed and m0 arbitrary. If the
equilibrium throughput is monotonic with respect to m0, then it is deadlock-free monotonic with
respect to m0.

Proof. It derives directly from Definition 7.

The lower part of the diagram of Figure 10 shows these results, arrows (c) and (d).
Our running example shows that, when initial marking variations are considered, a non-
monotonic systems does not imply a discontinuous system, arrow (e). The implication
represented by arrow (f) is discussed in Section 5. The relationships between these behaviors
and the bifurcations of the equilibrium marking, give us an insight that the configurations
of the net could provide some information about it. The structural properties that con-
figurations provide are related to the behavioral properties observed in the equilibrium
throughput of the TCPN system. Section 5 is devoted to clarify this fact.

5. Configurations, Continuity, and Monotonicity in MTS

Section 4 illustrated how discontinuities imply non-monotonicities in the equilibrium
throughput. Now, we will see that undesired behaviors only occur when the equilibrium
markings belong to regions of the reachable marking in which the associated T-covertures
do not contain the support of a P-semiflow.

For instance, the discontinuity that appears in the equilibrium throughput of our
running example (Figure 1a) occurs when the equilibrium marking belongs to configuration
C1,2,10,11,8,6,7 (see Figure 4). Its associated net has no P-Semiflows, but there is a P-flow
yT = [−1 − 1 0 0 0 0 − 1 1 0 1 1 0]. Moreover, the deadlocks shown in Figure 2, either
with respect to the initial marking or with respect to the firing rates, have an equilibrium
marking belonging to configuration C1,8,10,11,8,6,7 with associated subnet in Figure 5a; now,
a subnet in which there are no P-Semiflows and no P-flows.

Section 3 showed that with varying λ2 in the net depicted in Figure 1b, a discontinuity
appears in the equilibrium throughput. This is possible because the subnet does not contain
a P-flow; hence, no token conservation laws are present in the subnet even if the whole net is
conservative. The fact that configurations without P-flows lead to a undesired equilibrium
throughput can be generalized, as will be shown in Section 5. Now, configurations are
classified into suitable or problematic to systematically study, from a structural point of
view (parametrized by the equilibrium marking), the equilibrium throughput behavior in
Mono-T-semiflow TCPN systems when the firing rates vary.

Definition 8. A configuration Ci, of an MTS net N, is said to be:

1. Suitable if the support of a P-semiflow is contained in its T-coverture:

∃y 
 0 | yTC = 0 and ‖y‖ ⊆ T (Ci).

Otherwise, Ci is termed a problematic configuration.
2. nB-Problematic if its T-coverture does not contain the support of a P-semiflow and it contains

the support of a P-flow.
3. B-Problematic if its T-coverture does not contain the support of P-semiflows nor P-flows.

B- and nB- refer to the existence or nonexistence of bifurcations (jumps) in the equilib-
rium throughput, respectively, as already discussed in Section 3.
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Given a configuration of a net, deciding if it is suitable is quite simple. It can be checked
using a linear algebraic problem: find if there exists a P-semiflow y, whose support belongs
to the T-coverture of the configuration, ‖y‖ ∈ TC . If the configuration is not suitable, then
it remains to be decided if it is B-Problematic or nB-Problematic. This can also be checked
with a linear algebraic problem: find if there exists a P-flow y, whose support belongs to the
T-coverture of the configuration, ‖y‖ ∈ TC . If it exists, the configuration is nB-Problematic.
This is equivalent to check the rank of the token-flow matrix, if rank(CTC ) < |TC |, then the
configuration is nB-Problematic; otherwise, it is B-Problematic. Algorithm 3 performs this
verification and runs in polynomial time.

In Figure 4, the first two configurations C1,2,3,4,5,6,7 and C1,8,3,4,8,6,7 are suitable since
they have a P-semiflow, yT = [1 1 1 1 1 1 1 0 0 0 0 0] and yT = [0 0 1 0 0 1 0 1 0 0 0 0],
respectively. Configuration C1,2,10,11,8,6,7 is nB-Problematic since it does not have any P-
semiflow, but it has the P-flow yT = [−1 − 1 0 0 0 0 − 1 1 0 1 1 0]. Configuration C9,8,10,11,8,6,7
is B-Problematic since it has no P-flows (and thus, no P-semiflows).

Definition 9. Let 〈N, λ, m0〉 be an MTS TCPN system.

• The system is suitable, denoted by S, if every reachable equilibrium marking me activates a
suitable configuration,

• The system is nB-Problematic, denoted by nB, if every reachable equilibrium marking me
that does not activate a suitable configuration, activates only nB-Problematic configurations.

• The system is B-Problematic, denoted as B, if there exists a reachable equilibrium marking
me that does not activate a suitable configuration, but activates a B-Problematic one.

Algorithm 3 Computing the type of a given configuration.

Require: N and configuration C.
Ensure: The type of configuration

1: Compute the T-coverture of C: TC .
2: Compute the token-flow matrix of the associated subnet: CTC .

3: P3 :

{
Find y ≥ 0 s.t. yTCTC = 0∧ ∑

pi∈TC
y(pi) ≥ 1∧ ∀pj 6∈ TC , y(pj) = 0

}
4: if P3 has a solution then
5: C is suitable
6: else
7: if rank(CTC ) = |TC | then
8: C is B-problematic
9: else

10: C is nB-problematic
11: end if
12: end if

Figure 10 shows a complete picture of the relationships that exist between the reachable
configurations of a system and the equilibrium properties of the equilibrium marking
(monotonicity, continuity, and deadlock-free monotonicity), with respect to the initial
marking and the firing rates. The upper and lower part of that diagram were discussed in
Section 4.

Discontinuities of the equilibrium throughput, either with respect to the firing rates
or with respect to the initial markings, imply the non-monotonicity of the system. In the
case of the firing rate variation, the non-monotonicity implies that the equilibrium mark-
ing is reaching regions in which the associated configuration is problematic. Moreover,
the converse is also true.

Theorem 4 ([14]). Let (N, λ, m0) be an MTS TCPN system. The following two statements
are equivalent:
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1. Every reachable equilibrium marking activates a suitable configuration.
2. The equilibrium throughput is monotonic with respect to λ.

For example, continuing with the manufacturing system depicted in Figure 1.
Let the initial marking be fixed to m0 =

[
13 0 0 0 0 0 0 5 7 4 4 7

]T , and the firing rates

λ =
[
1 1 1 1 λ5 1 1

]T . Increasing the firing rate λ5, the equilibrium throughput exhibits a
discontinuity as can be seen in Figure 11a. Since this system is discontinuous, according to
the relations shown in Figure 10, it is also non-monotonic. This behavior occurs particularly
when the firing rate λ2 is increased, as is illustrated by Figure 11b. In this last case,
the system reaches a deadlock for any λ2 greater than λ5.

Now, if the initial marking is set to m0 =
[
13 0 0 0 0 0 0 6 7 4 4 7

]T , one more mark in
place p8, then the system cannot reach a deadlock for any value of the firing rates. This
can be explained thanks to the P-flow yT = [−1 − 1 0 0 0 0 − 1 1 0 1 1 0]. The invariant
law yTm0 = yTm gives that 1 = m(p8) + m(p10) + m(p11) − m(p1) − m(p2) − m(p7),
and mathematically implies that the deadlock marking (where all those places must be
zero) cannot be reached. The physical meaning is that the number of resources, m0(p8) = 6,
together with the capacity of the processing machine (m0(p10) = 4 and m0(p11) = 4),
are greater than the number of products that the system handles, m0(p1) = 13. This
prevents the blocking situation. Nonetheless, the system is non-monotonic, as can be seen
in Figure 11c.
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Figure 11. Equilibrium throughput properties of the MTS TCPN model in Figure 1b. (a) Disconti-
nuity of the equilibrium throughput for parameter λ5. (b) Non-monotonicity with deadlock of the
equilibrium throughput for parameter λ2. (c) Non-monotonicity without deadlock of the equilibrium
throughput for parameter λ2.

In these cases, the equilibrium marking reaches regions in which the associated con-
figuration is not suitable. In Figure 11a,b, a region with B-Problematic configuration
C1,8,10,11,8,6,7 is reached and that is why the discontinuity induced bifurcation and the dead-
locks appear (the configuration reached is associated with the subnet in Figure 5a). This is
formalized in the next theorem.

Theorem 5 ([15]). Let 〈N, λ, m0〉 be an MTS TCPN system with λ fixed and m0 arbitrary. If the
equilibrium throughput is not deadlock-free monotonic with respect to m0, then there exists an
equilibrium marking me that activates only a B-Problematic configuration.

For the case of Figure 11c, a region with nB-Problematic configuration C1,2,10,11,8,6,7 is
reached and that is why the system presents a decrement of the equilibrium throughput. It
is the same subnet of Figure 5a with the additional place p2; this place induces a restriction
that prevents the system of reaching the deadlock. This is formalized in the next proposition.

Proposition 6 ([15]). Let 〈N, λ, m0〉 be an MTS TCPN system with λ fixed and m0 arbitrary. If
every reachable equilibrium marking me, which does not activate a suitable configuration, activates
only an nB-Problematic configuration, then the equilibrium throughput is non-monotonic with
respect to m0.
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Now, let us set the firing rate to λ =
[
1 3 1 1 1 1 1

]T , and the initial marking to

m0 =
[
k1 0 0 0 0 0 0 6 7 4 4 7

]T , where k1 is taken as a variation parameter. If this initial
marking is increased, then the equilibrium throughput exhibits a non-monotonic behavior,
as can be seen in Figure 12. This complements the above explanation that the number of
resources, together with the capacity of the machine, should be greater than the products
that the system can handle, so that no blocking situations occur.
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Figure 12. Non-monotonicity of the system in Figure 1b with the deadlock of the equilibrium
throughput for parameter m0(p1) = k1.

In this case, the equilibrium marking reaches the region with nB-Problematic config-
uration C1,2,10,11,8,6,7 (decreasing part of the equilibrium marking), and finally reaches a
region associated with the B-Problematic configuration C1,8,10,11,8,6,7.

As can be seen in Theorems 4 and 5 and Proposition 6, the study of the equilibrium
throughput properties depends not only on the type of the configuration (suitable or
problematic), but also on the possibility that this configuration becomes activated from the
initial marking. As mentioned above, Algorithm 3 decides the type of a configuration; now,
Algorithm 4 determines when the configuration can be activated.

Algorithm 4 Computing if a given configuration can be activated by an equilibrium marking.

Require: 〈N, λ, m0〉, configuration C.
Ensure: If configuration C may be activated by an equilibrium marking

1: Compute the token-flow matrix C = Post− Pre
2: Compute a basis of P-semiflows By
3: Compute the existence of a reachable equilibrium marking activating C:
P4: { Find m ≥ 0 such that

1. BT
y m = BT

y m0; {Reachable marking}
2. CΛΠCm = 0; {Equilibrium marking}

3. ∀(pi, tj) ∈ C, m(pi)
Pre(pi ,tj)

≤ m(pk)
Pre(pk ,tj)

}; {marking activates configuration C}

4: if P4 has a solution then
5: C may be activated
6: else
7: C cannot be activated
8: end if

In order to know if a given configuration can be activated, the Algorithm 4 performs
a search of a marking m that satisfies the following restrictions: m is a positive reachable
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marking, m is an equilibrium marking, for every arc of the configuration, the place that
restricts the transition flow belongs to the T-coverture. It represents a unique system of
linear inequalities that can be solved in polynomial time.

For the TCPN system in Figure 8a, Algorithm 4 can decide if the problematic configu-
ration C11 = {(p1, t1), (p1, t2)} can be activated with m ≥ 0. The system of inequalities is:[

1 0 1
0 1 1

]
m =

[
10
9

]
, P4 − 1

CΛΠCm = 0, P4 − 2
m(p1)

2
≤ m(p2)

1
, P4 − 3

m(p1)

1
≤ m(p3)

1
, P4 − 3

For this case, Algorithm 4 finds that the configuration C11 can be activated, because the
equilibrium marking m = [5 4 5]T is a solution of problem P4.

Related with Theorem 4, if there exists a marking that can reach a problematic configu-
ration, then the system will be non-monotonic. The system also has the possibility to be non
deadlock-free monotonic, as happens when the initial marking is m0 =

[
13 0 0 0 0 0 0 5 7 4 4 7

]T
in the manufacturing system. Algorithm 5 determines if the system can reach a deadlock
regardless of the firing rate. It searches for a marking fulfilling the following restrictions:
m is a positive reachable marking and every place of the corresponding T-coverture has a
zero marking. Again, Algorithm 5 solves a unique system of linear inequalities, and it runs
in polynomial time. If for every reachable configuration there are no blocking markings,
then the system is deadlock-free monotonic.

Algorithm 5 Computing if there exists a deadlock marking in a given configuration.

Require: 〈N, m0〉, a problematic configuration C, matrix configuration ΠC .
Ensure: If there exists a blocking marking

1: Compute the token-flow matrix C = Post− Pre
2: Compute a basis of P-semiflows By
3: Compute the existence of a reachable deadlock marking activating C:
P5: { Find m ≥ 0 such that

1. BT
y m = BT

y m0

2. ∀(pi, tj) ∈ C, m(pi) = 0 }
4: if P5 has a solution then
5: m is a blocking marking
6: else
7: There are not blocking markings
8: end if

From Theorem 5 and Proposition 6, it is possible to derive the following structural
result. Referring to Figure 10, Proposition 6 represents the arrow going from nB to ¬M(m0),
and Theorem 5 represents the arrow going from ¬M(m0) to B. The meaning of this
relation is that if there exists an nB-Problematic configuration in N, then there exists also a
B-Problematic configuration.

Proposition 7 ([15]). Let N be an MTS net. If there exists an nB-Problematic configuration, then
there exists a B-Problematic configuration.

Finally, because of this implication, it is possible to conclude that: a non-monotonic
system, with respect to initial marking variations, is also non deadlock-free monotonic.



Appl. Sci. 2022, 12, 6123 25 of 30

Theorem 6 ([15]). Let 〈N, λ, m0〉 be an MTS TCPN system with λ fixed and m0 arbitrary.
The equilibrium throughput is a deadlock-free monotonic with respect to m0 iff it is monotonic with
respect to m0.

Reviewing the flow equation f = ΛΠCm, it could be concluded that both the firing
rate Λ and marking m affects in an analogous way to the system flow (a kind of duality),
since f depends directly on both factors. Nevertheless, when Figure 10 is analyzed in detail,
some differences on how the undesired throughput behaviors are related with each other,
with initial marking and firing rate variations, appears. This is why it can be seen as a
weak duality.

This happens because, although both are analogously affecting the system flow, once
again, the marking evolves with the time while the firing rates remain constant. To clarify
this, consider the state equation of the system ṁ = CΛΠCm. Obviously, the matrix Λ is
affecting the dynamic matrix of the mode AC = CΛΠC , i.e., affecting the eigenvalues of the
dynamic matrix. The initial marking m0 gives the initial condition of the state equation and
the marking is evolving according to this equation. Hence, these values play different roles
in the system evolution.

6. Reduction Rules

According to what has been previously established, when looking for undesired behav-
iors in an MTS TCPN system, it is important to see if there exist problematic configurations
that can be activated. A first step may be to verify if there are problematic configurations in
the net. If there are no problematic configurations, then the considered undesired behaviors
cannot appear in the system. Otherwise, the initial marking has to be considered to analyze
if the problematic configurations can be activated.

As already mentioned, the number of configurations of a net may be exponential
with the net size. Thus, searching for problematic configurations can be computationally
expensive. Even if the Algorithm 3 runs in polynomial time, the number of configurations
in a net can make the evaluation of every configuration impractical. In this sense, the CPN
system may be polynomially pre-processed before the computation of problematic configu-
rations, so that the total number of configurations to be analyzed is reduced. The purpose
of this pre-processing is to reduce the computational problem, but the theoretical problem
still remains. Nonetheless, it results very useful for many practical systems that can be
found in manufacturing systems, chemical reactions, and healthcare systems, among others.
Now, a set of reduction rules (see [16] for a more general and technical presentation) are
intuitively explained for very particular cases in order to present an analysis on how to
reduce systems maintaining its configuration properties.

As mentioned before, our running example of Figure 1b has 64 configurations. It is
possible to evaluate all these configurations using Algorithm 3 in order to determine if
there exist problematic configurations and their type (B- or nB-Problematic). After 64 steps,
the algorithm finds (see Figure 4) that:

1. Two of these configurations are B-Problematic, with associated T-covertures:

TC1,8,10,11,8,6,7 = {p1, p6, p7, p8, p10, p11},

TC9,8,10,11,8,6,7 = {p6, p7, p8, p9, p10, p11}

2. One of them is nB-Problematic, with associated T-coverture:

TC1,2,10,11,8,6,7 = {p1, p2, p6, p7, p8, p10, p11}

3. The other 61 configurations are suitable.

Figure 13 shows a reduction process of our running example, which is explained
below. The intention of this reductions is to maintain the problematic configurations or the
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ability to recover them from the reduced net. More importantly, the reductions allow to
gain insights about the structures that produce problematic configurations, which cause
the undesired behaviors of the equilibrium throughput.

Figure 13. Reduction process of a net model. (a) Original net model, post-fusion of transitions t6

and t7, and pre-fusion of t1 and t2 are shaded. (b) First reduced net with self-loop places that can be
removed. (c) Second reduced net, post-fusion of transitions t5 and t67 is shaded. (d) Third reduced
net, macrotransition is shaded. (e) Final reduced net.

Let us focus first on transition t7. One can notice that it has one input place (it is said
to be essential in the coverture). Hence, every configuration of the net must contain the arc
(p7, t7); thus, every T-coverture of the net contains place p7. From this fact, it is evident that
a problematic configuration cannot contain the arc (p12, t6), because place p12 would be
contained in its T-coverture, and p7 and p12 are the support of a P-semiflow. This can be
captured using two reduction rules:

1. A post-fusion of transitions can be performed for transitions t6 and t7. Their structure is
a particular case of the third reduction rule in Figure 14. It keeps the same number of
configurations in the reduced net, and it is possible to establish that every problematic
configuration of the reduced net has its corresponding problematic configuration in
the original one. A detailed explanation of this fact is exposed in Proposition 4 in [16].

2. The reduction of transitions t6 and t7 makes (in the neighboring of this part of the
reduced net) that p12 becomes a marked self-loop place. This place can be removed
following the idea of the implicit place for continuous Petri nets discussed in [19].
This particular structure is a marked P-semiflow of the net, even when it restricts the
behavior of the system, its elimination allows to remove several configurations. In this
particular case, after the transformation, the reduced net has now 32 configurations in
contrast with the 64 configurations of the original one.

Now, paying attention to transition t1, one can notice that its input places are p1 and p9.
This transition is the only input of place p2, which in turn, only have the output transition
t2. Roughly speaking, the enabling of t2 depends indirectly on the marking of places p1 and
p9. A pre-fusion of transitions t1 and t2 can be performed in the net, obtaining a reduced
net in which the T-covertures of the problematic configurations are related to the ones of
the original net, except that the “absorved” place p2 is not present in the T-covertures of
the reduced net. This reduction is a particular case of the forth rule depicted in Figure 14,
which is explained in detail in Proposition 5 of [16].

As in the previous reduction, a self-loop place p9 is obtained after the pre-fusion of
those transitions. Once again, this place is structurally implicit (particularly, an isolated
and marked P-semiflow) and can be removed. Therefore, a reduced net in which there
are 16 configurations is obtained. Again, a post-fusion between transitions t5 and t67 can
be performed obtaining a reduced net in which the number of configurations remains
(16 configurations).
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Transitions t4 and t567 together with places p5 and p11 form a strongly connected
choice-free net, which is also consistent (in particular, it is a simple circuit). Obviously,
the P-semiflows inside this subnet should be initially marked, otherwise the system would
be blocked. The reduction of this local structure is identified as a macrotransition according
to Definition 14 in [16]. It is shown as the second rule in Figure 14. This reduction can be
performed in a net maintaining its problematic configurations, because no choice places
are removed in it.
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Figure 14. Particular examples of reduction rules preserving problematic configurations from [16].

The dual concept of the macrotransition is the macroplace (see the first rule in Figure 14).
In this case, the places and transitions in the identified subnet form a strongly connected
join-free net, which is also conservative. The configurations of the reduced net are mostly
the same as the original, because no join transitions are removed during the procedure.
A detailed discussion about this rule can be found in [16].

Finally, for the reduced net in Figure 13e with eight configurations, Algorithm 3 can
be applied to decide if these configurations are problematic. This reduced net has one
B-Problematic configuration, whose associated T-coverture is TC8,10,8 = {p8, p10}, and one
nB-Problematic configuration, whose T-coverture is TC1,10,8 = {p1, p8, p10}.

Now, if we want to obtain the problematic configurations of the original net from the
reduced one, this can be done going backwards in the transformation path carried out.

• From the net in Figure 13e, configuration C8,10,8 is B-Problematic. Its T-coverure is
TC8,10,8 = {p8, p10}, where we can see that places p1, p3, and p4 are not part of the
problematic configuration in the reduced net, and thus, they are not in the original one.

• From the net in Figure 13d, if p4 and p3 are not used, then necessarily, p11 and p10
should be in the original problematic T-coverture. Thus, the recovered T-coverture at
this point is TC8,10,11,8 = {p8, p10, p11}.

• From the net in Figure 13c, we can see that place p6 is an essential cover of the net;
thus, it should be in the original T-coverture. Hence, the recovered T-coverture at this
point is TC8,10,11,8,6 = {p6, p8, p10, p11}.

• From the net in Figure 13b, places p9 and p12 cannot be part of the problematic
configuration, they represent P-semiflows in this net. Hence, the T-coverture at this
point is TC8,10,11,8,6 = {p6, p8, p10, p11}.
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• From the net in Figure 13a, place p7 is an essential cover, so it must be in the configu-
ration. The previously removed place p9 was involved in a pre-fusion of transitions,
which in this net means that place p2 (“absorved” in the pre-fusion) cannot be used.
In this net, either place p1 or p9 can restrict the flow of transition t1. Hence, we have
two B-Problematic configurations, C1,8,10,11,8,6,7 and C9,8,10,11,8,6,7.

These last configurations are the two B-Problematic configurations that the original
net has. A similar procedure can be carried out to obtain the nB-Problematic configuration
of the original net from the reduced one.

These reductions provide an important insight about the roots of undesired behaviors.
In particular, these reductions maintain the problematic configurations of those having
choice places interacting inadequately with join transitions. In our running example, one B-
Problematic configuration of the reduced net “captures” two B-Problematic configurations
of the original net. This is because both configurations have the same problem in common,
namely, the interaction between p8 and t3 is not adequate. A further discussion of this fact
is also presented in [16].

7. Concluding Remarks

Equilibrium throughput is a performance index of manufacturing systems that mea-
sures in “steady state” the quantity of goods fabricated per unit time. When the man-
ufacturing system is modeled as a TCPN, then the equilibrium throughput represents
the transition flow. This flow depends on the net structure, the firing rate of transitions,
and the TCPN initial marking. Given a net structure, from an engineering point of view,
both the firing rate and the marking can be varied to modify the equilibrium throughput.
However, despite the simple formula of the equilibrium throughput f e = ΛΠCme, this
work illustrated that a careful analysis must be carried out when those parameters vary.
In fact, they may lead to very complex behaviors of the TCPN equilibrium throughput.

In particular, this work showed that the structural objects named problematic configu-
rations are responsible that varying the initial marking or firing rate of transitions the equi-
librium throughput of the net exhibits paradoxical behaviors, such as non-monotonicities
and discontinuities. To explain those behaviors, we start by delineating how the equilib-
rium marking varies when the firing rate of transitions changes. In this case, the state
equation ṁ = CΛΠCm, m ∈ RC , C ∈ SC(N), m(0) = m0 is used. This work points out
that when there exist closed paths gaining/losing tokens and the firing rate of the transi-
tions varies, the equilibrium marking may exhibit jumps, generating undesired behaviors,
such as discontinuities and non-monotonicities, in the equilibrium throughput with respect
to the variation of firing rates.

The structural objects named problematic configurations are considered to formally
explain how the structure of the net determines the undesired behaviors in the equilibrium
throughput. Those configurations highlight how the net structure participates in the
generation of discontinuities and non-monotonicities in the equilibrium throughput when
they vary the initial marking, m0, or firing rates of transitions, λ.

Herein, we show that when the equilibrium marking exhibits a discontinuity w.r.t.
firing rate variations, then it is non-monotonic w.r.t. firing rate variations, i.e., increasing
the speed of the resources reduced the equilibrium throughput, which is an undesired
effect. Moreover, if the equilibrium is not deadlock free w.r.t. firing rate variations, then it
is non-monotonic w.r.t. firing rate variations. Similar properties are found when the initial
marking varies instead of the firing rate.

It is worth to note that the number of configurations may grow exponentially in the
number of join transitions. Nevertheless, a procedure to reduce the net, preserving the
undesired equilibrium throughput behaviors, is described. It allows to face the problem of
finding out a problematic configuration in a reasonable amount of computational time.
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Abbreviations
The following abbreviations are used in this manuscript:

PN Petri net
CPN Continuous Petri net
TCPN Timed continuous Petri net
DES Discrete event system
FMS Flexible manufacturing system
ISS Infinite server semantics
FSS Finite server semantics
PS Product semantics
MTS Mono-T-Semiflow
MTSR Mono-T-Semiflow Reducible
CNC Computer numerical control
CF Choice-Free
JF Join-Free
Ct Consistent
Cv Conservative
C(λ) Continuous with respect to the firing rate
M(λ) Monotonic with respect to the firing rate
DFM(λ) Deadlock-Free Monotonic with respect to the firing rate
C(m0) Continuous with respect to the initial marking
M(m0) Monotonic with respect to the initial marking
DFM(m0) Deadlock-Free Monotonic with respect to the initial marking
nB nB-Problematic system
B B-Problematic system
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