37 research outputs found

    A fat-enriched, glucose-enriched diet markedly attenuates adiponectin mRNA levels in rat epididymal adipose tissue

    Get PDF
    Adiponectin levels are decreased in subjects with obesity, diabetes and coronary artery disease. in the present study, we have investigated whether the decrease in the levels and mRNA expression of adiponectin is due to obesity or to the diet itself. Wistar rats were either fed standard laboratory chow throughout (controls) or given a fat-enriched, glucose-enriched diet (diet-fed) for 2 days or 16 weeks. After 2 days of diet feeding, total body weight, fat pad masses and the plasma levels of glucose, insulin and leptin were all comparable between the two groups, while plasma NEFA (non-esterified fatty acid) and triacylglycerol levels were increased in the diet-fed animals (P < 0.01 for both). There was a marked (P < 0.01) decrease in plasma adiponectin levels. After 16 weeks of diet feeding, diet-fed rats had significantly higher body weight, fat pad mass and plasma levels of leptin, adiponectin, NEFA and triacylglycerol (P < 0.001 for all) compared with chow-fed controls, whereas plasma levels of glucose and insulin were similar in the two groups. After 2 days of diet feeding, there were no significant changes in Ob mRNA levels in epididymal fat, whereas there was a marked decrease in adiponectin mRNA levels. After 16 weeks of diet feeding, rats had significantly increased levels of Ob mRNA, but decreased adiponectin mRNA levels, in epididymal fat compared with the chow-fed group (P < 0.001 for both). These findings suggest that obesity per se is not a factor in the decreased adiponectin levels observed in obese subjects. We propose that the lipid profile of the plasma and/or the constituents of the diet consumed by rats may contribute to adiponectin levels more than obesity per se.Univ Liverpool, Dept Med, Neuroendocrine & Obes Biol Unit, Liverpool L69 6GA, Merseyside, EnglandUniversidade Federal de SĂŁo Paulo, Dept Physiol, SĂŁo Paulo, BrazilUniv Complutense, Fac Biol Sci, Dept Anim Biol 2, E-28040 Madrid, SpainUniversidade Federal de SĂŁo Paulo, Dept Physiol, SĂŁo Paulo, BrazilWeb of Scienc

    Resveratrol: A Multifunctional Compound Improving Endothelial Function: Editorial to: “Resveratrol Supplementation Gender Independently Improves Endothelial Reactivity and Suppresses Superoxide Production in Healthy Rats” by S. Soylemez et al.

    Get PDF
    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively

    Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats.</p> <p>Methods</p> <p>Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied.</p> <p>Results</p> <p>The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1.</p> <p>Conclusion</p> <p>We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation.</p

    Insights into the Molecular Mechanisms of the Anti-Atherogenic Actions of Flavonoids in Normal and Obese Mice

    Get PDF
    Obesity is a major and independent risk factor for cardiovascular disease and it is strongly associated with the development of dyslipidemia, insulin resistance and type 2 diabetes. Flavonoids, a diverse group of polyphenol compounds of plant origin widely distributed in human diet, have been reported to have numerous health benefits, although the mechanisms underlying these effects have remained obscure. We analyzed the effects of chronic dietary supplementation with flavonoids extracted from cranberry (FLS) in normal and obese C57/BL6 mice compared to mice maintained on the same diets lacking FLS. Obese mice supplemented with flavonoids showed an amelioration of insulin resistance and plasma lipid profile, and a reduction of visceral fat mass. We provide evidence that the adiponectin-AMPK pathway is the main mediator of the improvement of these metabolic disorders. In contrast, the reduced plasma atherogenic cholesterol observed in normal mice under FLS seems to be due to a downregulation of the hepatic cholesterol synthesis pathway. Overall, we demonstrate for the first time that the molecular mechanisms underlying the beneficial effects of flavonoids are determined by the metabolic state

    The role of the sarcolemmal Ca(2+)-ATPase in the pH transients associated with contraction in rat smooth muscle.

    No full text
    1. We have investigated the origin of the intracellular acid pH transients that accompany myometrial contraction. Intra- and extracellular pH were measured with SNARF and intracellular Ca2+ concentration ([Ca2+]i) with indo-1. 2. An intracellular acidification accompanied spontaneous contractions and those elicited by KCl depolarization or the addition of the agonists carbachol or prostaglandin F2 alpha. The size of the acidification increased with the magnitude of the contraction. 3. The intracellular acidification was accompanied by an extracellular alkalinization, showing that it results from proton movement across the surface membrane. Furthermore, it was decreased either by addition of Cd2+ (20 nM, an inhibitor of the sarcolemmal Ca(2+)-ATPase) or by elevating [Ca2+]o. 4. Extracellular alkalinization increased the magnitude of the rise of [Ca2+]i and force produced by KCl. 5. An intracellular acidification was also associated with contraction in the portal vein and ureter. 6. We conclude that the sarcolemmal Ca(2+)-ATPase produces a significant intracellular acidification while removing Ca2+. Both the acidification and decrease of [Ca2+]i will promote relaxation. Since Ca2+ and protons have opposite effects on many cellular processes, this dual regulation by these two ions may be of general importance
    corecore