95 research outputs found
Form removal aspects on the waviness parameters for steel sheet in automotive applications : fourier filtering versus polynomial regression
Premium car makers attach great importance to the visual appearance of the painted car skin as an indication of product quality. The âorange peelâ phenomenon constitutes a major problem here. It is not only depending on the paintâs chemical composition and application method, but also on possible waviness components in the sheet substrate. Therefore one is searching hard for a valuable waviness parameter to quantify the substrateâs fitness for purpose. A technically emerging problem is how to remove the form from the measured signal, which is indeed not significant to the orange peel phenomenon. This paper will compare two commonly used approaches: i.e. Fourier filtering versus polynomial regression and will reveal and quantify some common aspects in terms of wavelengths
Protein kinase C α and Δ phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium
Previous studies indicated that the increase in protein kinase C (PKC)-mediated myofilament protein phosphorylation observed in failing myocardium might be detrimental for contractile function. This study was designed to reveal and compare the effects of PKCα- and PKCΔ-mediated phosphorylation on myofilament function in human myocardium. Isometric force was measured at different [Ca2+] in single permeabilized cardiomyocytes from failing human left ventricular tissue. Activated PKCα and PKCΔ equally reduced Ca2+ sensitivity in failing cardiomyocytes (ÎpCa50 = 0.08 ± 0.01). Both PKC isoforms increased phosphorylation of troponin I- (cTnI) and myosin binding protein C (cMyBP-C) in failing cardiomyocytes. Subsequent incubation of failing cardiomyocytes with the catalytic subunit of protein kinase A (PKA) resulted in a further reduction in Ca2+ sensitivity, indicating that the effects of both PKC isoforms were not caused by cross-phosphorylation of PKA sites. Both isozymes showed no effects on maximal force and only PKCα resulted in a modest significant reduction in passive force. Effects of PKCα were only minor in donor cardiomyocytes, presumably because of already saturated cTnI and cMyBP-C phosphorylation levels. Donor tissue could therefore be used as a tool to reveal the functional effects of troponin T (cTnT) phosphorylation by PKCα. Massive dephosphorylation of cTnT with alkaline phosphatase increased Ca2+ sensitivity. Subsequently, PKCα treatment of donor cardiomyocytes reduced Ca2+ sensitivity (ÎpCa50 = 0.08 ± 0.02) and solely increased phosphorylation of cTnT, but did not affect maximal and passive force. PKCα- and PKCΔ-mediated phosphorylation of cMyBP-C and cTnI as well as cTnT decrease myofilament Ca2+ sensitivity and may thereby reduce contractility and enhance relaxation of human myocardium
Oral biofilm models for mechanical plaque removal
In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a salivary pellicle for 2Â h or grown after adhesion for 16Â h, after which, their removal was evaluated. In a contact mode, no differences were observed between the manual, rotating, or sonic brushing; and removal was on average 39%, 84%, and 95% for Streptococcus mutans, Streptococcus oralis, and Actinomyces naeslundii, respectively, and 90% and 54% for the dual- and multi-species biofilms, respectively. However, in a non-contact mode, rotating and sonic brushes still removed considerable numbers of bacteria (24â40%), while the manual brush as a control (5â11%) did not. Single A. naeslundii and dual-species (A. naeslundii and S. oralis) biofilms were more difficult to remove after 16Â h growth than after 2Â h adhesion (on average, 62% and 93% for 16- and 2-h-old biofilms, respectively), while in contrast, biofilms grown from whole saliva were easier to remove (97% after 16Â h and 54% after 2Â h of growth). Considering the strong adhesion of dual-species biofilms and their easier more reproducible growth compared with biofilms grown from whole saliva, dual-species biofilms of A. naeslundii and S. oralis are suggested to be preferred for use in mechanical plaque removal studies in vitro
Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study
<p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p>
<p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p>
<p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 Ă 10â6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 Ă 10â8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 Ă 10â6 ≤ P ≤ .02).</p>
<p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p>
The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313
Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Îst313-td) followed by complementation (02-03/002-C). Îst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (nâ=â82) and 100% of S. Dublin strains (nâ=â50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (nâ=â82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313
Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1
Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1ÎČ and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death
Evaluation of a web-based intervention to reduce antibiotic prescribing for LRTI in six European countries: quantitative process analysis of the GRACE/INTRO randomised controlled trial.
To reduce the spread of antibiotic resistance, there is a pressing need for worldwide implementation of effective interventions to promote more prudent prescribing of antibiotics for acute LRTI. This study is a process analysis of the GRACE/INTRO trial of a multifactorial intervention that reduced antibiotic prescribing for acute LRTI in six European countries. The aim was to understand how the interventions were implemented and to examine effects of the interventions on general practitioners' (GPs') and patients' attitudes
Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates
Protein kinase (PK) genes comprise the third largest superfamily that occupy âŒ2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.PK genomic architecture, the size of gene functional domains and evolutionary rates correlate with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene structure and affect rates of evolution
- âŠ