44 research outputs found

    Intravenous Immunoglobulin Treatment in Multifocal Motor Neuropathy

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Introduction Multifocal motor neuropathy (MMN) is characterized by asymmetric weakness of limbs and the electrophysiological finding of conduction block in motor nerves. Conduction block is the inability of nerves to propagate action potentials and is probably caused b

    A High-Density Genome-Wide Association Screen of Sporadic ALS in US Veterans

    Get PDF
    Following reports of an increased incidence of amyotrophic lateral sclerosis (ALS) in U.S. veterans, we have conducted a high-density genome-wide association study (GWAS) of ALS outcome and survival time in a sample of U.S. veterans. We tested ∼1.3 million single nucleotide polymorphisms (SNPs) for association with ALS outcome in 442 incident Caucasian veteran cases diagnosed with definite or probable ALS and 348 Caucasian veteran controls. To increase power, we also included genotypes from 5909 publicly-available non-veteran controls in the analysis. In the survival analysis, we tested for association between SNPs and post-diagnosis survival time in 639 Caucasian veteran cases with definite or probable ALS. After this discovery phase, we performed follow-up genotyping of 299 SNPs in an independent replication sample of Caucasian veterans and non-veterans (ALS outcome: 183 cases and 961 controls; survival: 118 cases). Although no SNPs reached genome-wide significance in the discovery phase for either phenotype, three SNPs were statistically significant in the replication analysis of ALS outcome: rs6080539 (177 kb from PCSK2), rs7000234 (4 kb from ZNF704), and rs3113494 (13 kb from LOC100506746). Two SNPs located in genes that were implicated by previous GWA studies of ALS were marginally significant in the pooled analysis of discovery and replication samples: rs17174381 in DPP6 (p = 4.4×10−4) and rs6985069 near ELP3 (p = 4.8×10−4). Our results underscore the difficulty of identifying and convincingly replicating genetic associations with a rare and genetically heterogeneous disorder such as ALS, and suggest that common SNPs are unlikely to account for a substantial proportion of patients affected by this devastating disorder

    The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water.</p> <p>Methods</p> <p>To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements.</p> <p>Results</p> <p>We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake.</p> <p>Conclusion</p> <p>Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis.</p

    TBK1: a new player in ALS linking autophagy and neuroinflammation.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS
    corecore