67 research outputs found
The Presence of IL-17A and T Helper 17 Cells in Experimental Mouse Brain Tumors and Human Glioma
Background: Recently, CD4 + IL-17A + T helper 17 (Th17) cells were identified and reported in several diseased states, including autoimmunity, infection and various peripheral nervous system tumors. However, the presence of Th17 in gliaderived tumors of the central nervous system has not been studied. Methodology/Principal Findings: In this report, we demonstrate that mRNA expression for the Th17 cell cytokine IL-17A, as well as Th17 cells, are present in human glioma. The mRNA expression for IL-17A in glioma was recapitulated in an immunocompetent mouse model of malignant glioma. Furthermore, the presence of Th17 cells was confirmed in both human and mouse glioma. Interestingly, some Th17 cells present in mouse glioma co-expressed the Th1 and Th2 lineage markers, IFN-c and IL-4, respectively, but predominantly co-expressed the Treg lineage marker FoxP3. Conclusions: These data confirm the presence of Th17 cells in glia-derived CNS tumors and provide the rationale for further investigation into the role of Th17 cells in malignant glioma
Characterization and mitigation of gene expression burden in mammalian cells
Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells
Long Tract of Untranslated CAG Repeats Is Deleterious in Transgenic Mice
The most frequent trinucleotide repeat found in human disorders is the CAG sequence. Expansion of CAG repeats is mostly found in coding regions and is thought to cause diseases through a protein mechanism. Recently, expanded CAG repeats were shown to induce toxicity at the RNA level in Drosophila and C. elegans. These findings raise the possibility that CAG repeats may trigger RNA-mediated pathogenesis in mammals. Here, we demonstrate that transgenic mice expressing EGFP transcripts with long CAG repeats in the 3′ untranslated region develop pathogenic features. Expression of the transgene was directed to the muscle in order to compare the resulting phenotype to that caused by the CUG expansion, as occurs in myotonic dystrophy. Transgenic mice expressing 200, but not those expressing 0 or 23 CAG repeats, showed alterations in muscle morphology, histochemistry and electrophysiology, as well as abnormal behavioral phenotypes. Expression of the expanded CAG repeats in testes resulted in reduced fertility due to defective sperm motility. The production of EGFP protein was significantly reduced by the 200 CAG repeats, and no polyglutamine-containing product was detected, which argues against a protein mechanism. Moreover, nuclear RNA foci were detected for the long CAG repeats. These data support the notion that expanded CAG repeat RNA can cause deleterious effects in mammals. They also suggest the possible involvement of an RNA mechanism in human diseases with long CAG repeats
Rare Tumors 2009; volume 1:e41 Lipid-rich histology in a
basal-type immuno-profile breast carcinoma: a clinicopathological histochemical and immunohistochemical analysis of a cas
Strength training and aerobic exercise training for muscle disease.
Contains fulltext :
89175.pdf (publisher's version ) (Open Access)BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise training in people with a muscle disease. SEARCH STRATEGY: We searched the Cochrane Neuromuscular Disease Group Trials Specialized Register (July 2009), the Cochrane Rehabilitation and Related Therapies Field Register (October 2002, August 2008 and July 2009), The Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 3, 2009) MEDLINE (January 1966 to July 2009), EMBASE (January 1974 to July 2009), EMBASE Classic (1947 to 1973) and CINAHL (January 1982 to July 2009). SELECTION CRITERIA: Randomised or quasi-randomised controlled trials comparing strength training or aerobic exercise programmes, or both, to no training, and lasting at least 10 weeks.For strength training Primary outcome: static or dynamic muscle strength. Secondary: muscle endurance or muscle fatigue, functional assessments, quality of life, muscle membrane permeability, pain and experienced fatigue.For aerobic exercise training Primary outcome: aerobic capacity expressed as work capacity. Secondary: aerobic capacity (oxygen consumption, parameters of cardiac or respiratory function), functional assessments, quality of life, muscle membrane permeability, pain and experienced fatigue. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted the data. MAIN RESULTS: We included three trials (121 participants). The first compared the effect of strength training versus no training in 36 people with myotonic dystrophy. The second trial compared strength training versus no training, both combined with albuterol or placebo, in 65 people with facioscapulohumeral muscular dystrophy. The third trial compared combined strength training and aerobic exercise versus no training in 18 people with mitochondrial myopathy. In the myotonic dystrophy trial there were no significant differences between training and non-training groups for primary and secondary outcome measures. In the facioscapulohumeral muscular dystrophy trial only a +1.17 kg difference (95% confidence interval 0.18 to 2.16) in dynamic strength of elbow flexors in favour of the training group reached statistical significance. In the mitochondrial myopathy trial there were no significant differences in dynamic strength measures between training and non-training groups. Exercise duration and distance cycled in a submaximal endurance test increased significantly in the training group compared to the control group. AUTHORS' CONCLUSIONS: In myotonic dystrophy and facioscapulohumeral muscular dystrophy, moderate-intensity strength training appears not to do harm but there is insufficient evidence to conclude that it offers benefit. In mitochondrial myopathy, aerobic exercise combined with strength training appears to be safe and may be effective in increasing submaximal endurance capacity. Limitations in the design of studies in other muscle diseases prevent more general conclusions in these disorders
Strength training and aerobic exercise training for muscle disease
Contains fulltext :
123481.pdf (publisher's version ) (Open Access)BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. This is an update of a review first published in 2004. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise training in people with a muscle disease. SEARCH METHODS: We searched the Cochrane Neuromuscular Disease Group Specialized Register (July 2012), CENTRAL (2012 Issue 3 of 4), MEDLINE (January 1946 to July 2012), EMBASE (January 1974 to July 2012), EMBASE Classic (1947 to 1973) and CINAHL (January 1982 to July 2012). SELECTION CRITERIA: Randomised or quasi-randomised controlled trials comparing strength training or aerobic exercise programmes, or both, to no training, and lasting at least six weeks, in people with a well-described diagnosis of a muscle disease.We did not use the reporting of specific outcomes as a study selection criterion. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial quality and extracted the data obtained from the full text-articles and from the original investigators. We collected adverse event data from included studies. MAIN RESULTS: We included five trials (170 participants). The first trial compared the effect of strength training versus no training in 36 people with myotonic dystrophy. The second trial compared aerobic exercise training versus no training in 14 people with polymyositis and dermatomyositis. The third trial compared strength training versus no training in a factorial trial that also compared albuterol with placebo, in 65 people with facioscapulohumeral muscular dystrophy (FSHD). The fourth trial compared combined strength training and aerobic exercise versus no training in 18 people with mitochondrial myopathy. The fifth trial compared combined strength training and aerobic exercise versus no training in 35 people with myotonic dystrophy type 1.In both myotonic dystrophy trials and the dermatomyositis and polymyositis trial there were no significant differences between training and non-training groups for primary and secondary outcome measures. The risk of bias of the strength training trial in myotonic dystrophy and the aerobic exercise trial in polymyositis and dermatomyositis was judged as uncertain, and for the combined strength training and aerobic exercise trial, the risk of bias was judged as adequate. In the FSHD trial, for which the risk of bias was judged as adequate, a +1.17 kg difference (95% confidence interval (CI) 0.18 to 2.16) in dynamic strength of elbow flexors in favour of the training group reached statistical significance. In the mitochondrial myopathy trial, there were no significant differences in dynamic strength measures between training and non-training groups. Exercise duration and distance cycled in a submaximal endurance test increased significantly in the training group compared to the control group. The differences in mean time and mean distance cycled till exhaustion between groups were 23.70 min (95% CI 2.63 to 44.77) and 9.70 km (95% CI 1.51 to 17.89), respectively. The risk of bias was judged as uncertain. In all trials, no adverse events were reported. AUTHORS' CONCLUSIONS: Moderate-intensity strength training in myotonic dystrophy and FSHD and aerobic exercise training in dermatomyositis and polymyositis and myotonic dystrophy type I appear to do no harm, but there is insufficient evidence to conclude that they offer benefit. In mitochondrial myopathy, aerobic exercise combined with strength training appears to be safe and may be effective in increasing submaximal endurance capacity. Limitations in the design of studies in other muscle diseases prevent more general conclusions in these disorders
- …