176 research outputs found

    Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordHuman spaceflight is associated with a substantial loss of skeletal muscle mass and muscle strength. Neuromuscular electrical stimulation (NMES) evokes involuntary muscle contractions, which have the potential to preserve or restore skeletal muscle mass and neuromuscular function during and/or post spaceflight. This assumption is largely based on evidence from terrestrial disuse/immobilization studies without the use of large exercise equipment that may not be available in spaceflight beyond the International Space Station. In this mini-review we provide an overview of the rationale and evidence for NMES based on the terrestrial state-of-the-art knowledge, compare this to that used in orbit, and in ground-based analogs in order to provide practical recommendations for implementation of NMES in future space missions. Emphasis will be placed on knee extensor and plantar flexor muscles known to be particularly susceptible to deconditioning in space missions

    Morning Priming Exercise Strategy to Enhance Afternoon Performance in Young Elite Soccer Players.

    Full text link
    PURPOSE: To compare the effects of different modalities of morning priming exercise on afternoon physical performance with the associated hormonal and psychophysiological responses in young soccer players. METHODS: In a randomized counterbalanced crossover design, 12 young soccer players completed 3 different morning conditions on 3 different days: repeated-sprint running (6 × 40 m), easy exercise (4 × 12 fast half squats, 6 speed ladder drills, and 20-m sprints), and control (no exercise). Blood testosterone and cortisol concentrations were assessed upon arrival (approximately 8:30AM) and approximately 5 hours and 30 minutes later. Body temperature, self-reported mood, quadriceps neuromuscular function (maximal voluntary contraction, voluntary activation, rate of torque development, and twitch contractile properties), jump, and sprint performance were evaluated twice per day, while rating of perceived exertion, motivation, and the Yo-Yo Intermittent Recovery level 2 (IR2) tests were assessed once per day. RESULTS: Compared with the control, repeated-sprint running induced a possible positive effect on testosterone (+11.6%) but a possible to very likely negative effect on twitch contractile properties (-13.0%), jump height (-1.4%), and Yo-Yo IR2 (-7.1%). On the other hand, easy exercise had an unclear effect on testosterone (-3.3%), resulted in lower self-reported fatigue (-31.0%) and cortisol (-12.9%), and had a possible positive effect on the rate of torque development (+4.3%) and Yo-Yo IR2 (+6.5%) compared with the control. CONCLUSIONS: Players' testosterone levels were positively influenced by repeated-sprint running, but this did not translate into better physical function, as both muscular and endurance performance were reduced. Easy exercise seemed to be suitable to optimize the physical performance and psychophysiological state of young soccer players

    Body mass reduction markedly improves muscle performance and body composition in obese females aged 61-75 years: comparison between the effects exerted by energy-restricted diet plus moderate aerobic-strength training alone or associated with rGH or nandrolone undecanoate

    Get PDF
    OBJECTIVE: To investigate the effectiveness of a body mass reduction programme entailing diet caloric restriction and moderate physical activity with or without supplementary treatment with recombinant (r) GH or steroids to improve body composition and muscle performance in severely obese women aged 61-75 years. METHODS: Twenty women were randomly assigned to one of three groups: body mass reduction alone; body mass reduction plus rGH; body mass reduction plus nandrolone undecanoate. Body composition, isotonic muscle strength and anaerobic power output during jumping were determined before and after the 3-week period. RESULTS: Whatever the experimental group considered, body mass (P<0.01), body mass index (P<0.05) and fat mass (P<0.05) decreased significantly, whereas muscle strength and power increased significantly (P<0.05) after the intervention. CONCLUSION: Small body mass reductions after 3 weeks of energy-restricted diet combined with moderate aerobic and strength exercise are associated with significant improvements in upper and lower limb muscle strength and power and reduction of fat mass in severely obese women aged 61-75 years. Although the association of rGH or nandrolone undecanoate does not appear to exert additional effects on body composition and muscle performance attained by body mass reduction alone, further additional studies with larger study groups, different dosages and more prolonged periods are required for definitive conclusions to be drawn

    Obesity Impact on the Attentional Cost for Controlling Posture

    Get PDF
    International audienceBACKGROUND: This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. METHODS: Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. FINDINGS: (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. INTERPRETATION: Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities

    Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction

    Get PDF
    Purpose. Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann (H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric contractions (NMES+ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method. Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each experimental condition (NMES+ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak Hreflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles. Results. H-reflex amplitude was increased by 4.5% after the NMES+ISO condition (p < 0.05), while passive NMES and ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion. The reported facilitation of spinal excitability following NMES+ISO could be due to a combination of greater motor neuronal and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone

    Neural adaptations to electrical stimulation strength training

    Get PDF
    This review provides evidence for the hypothesis that electrostimulation strength training (EST) increases the force of a maximal voluntary contraction (MVC) through neural adaptations in healthy skeletal muscle. Although electrical stimulation and voluntary effort activate muscle differently, there is substantial evidence to suggest that EST modifies the excitability of specific neural paths and such adaptations contribute to the increases in MVC force. Similar to strength training with voluntary contractions, EST increases MVC force after only a few sessions with some changes in muscle biochemistry but without overt muscle hypertrophy. There is some mixed evidence for spinal neural adaptations in the form of an increase in the amplitude of the interpolated twitch and in the amplitude of the volitional wave, with less evidence for changes in spinal excitability. Cross-sectional and exercise studies also suggest that the barrage of sensory and nociceptive inputs acts at the cortical level and can modify the motor cortical output and interhemispheric paths. The data suggest that neural adaptations mediate initial increases in MVC force after short-term EST
    • …
    corecore