482 research outputs found

    A novel form of JARID2 is required for differentiation in lineage-committed cells

    Get PDF
    Polycomb repressive complex‐2 (PRC 2) is a group of proteins that play an important role during development and in cell differentiation. PRC 2 is a histone‐modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID 2 is a co‐factor of PRC 2 and is important for targeting PRC 2 to chromatin. Here, we show that, unlike in embryonic stem cells, in lineage‐committed human cells, including human epidermal keratinocytes, JARID 2 predominantly exists as a novel low molecular weight form, which lacks the N‐terminal PRC 2‐interacting domain (ΔN‐JARID 2). We show that ΔN‐JARID 2 is a cleaved product of full‐length JARID 2 spanning the C‐terminal conserved jumonji domains. JARID 2 knockout in keratinocytes results in up‐regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID 2‐null keratinocytes can be rescued by expression of ΔN‐JARID 2 suggesting that, in contrast to PRC 2, ΔN‐JARID 2 promotes activation of differentiation genes. We propose that a switch from expression of full‐length JARID 2 to ΔN‐JARID 2 is important for the up‐regulation differentiation genes

    Tumour Suppressive Function and Modulation of Programmed Cell Death 4 (PDCD4) in Ovarian Cancer

    Get PDF
    Background: Programmed cell death 4 (PDCD4), originally identified as the neoplastic transformation inhibitor, was attenuated in various cancer types. Our previous study demonstrated a continuous down-regulation of PDCD4 expression in the sequence of normal-borderline-malignant ovarian tissue samples and a significant correlation of PDCD4 expression with disease-free survival. The objective of the current study was to further investigate the function and modulation of PDCD4 in ovarian cancer cells. Principal Findings: We demonstrated that ectopic PDCD4 expression significantly inhibited cell proliferation by inducing cell cycle arrest at G1 stage and up-regulation of cell cycle inhibitors of p27 and p21. Cell migration and invasion were also inhibited by PDCD4. PDCD4 over-expressing cells exhibited elevated phosphatase and tensin homolog (PTEN) and inhibited protein kinase B (p-Akt). In addition, the expression of PDCD4 was up-regulated and it was exported to the cytoplasm upon serum withdrawal treatment, but it was rapidly depleted via proteasomal degradation upon serum re-administration. Treatment of a phosphoinositide 3-kinase (PI3K) inhibitor prevented the degradation of PDCD4, indicating the involvement of PI3K-Akt pathway in the modulation of PDCD4. Conclusion: PDCD4 may play a critical function in arresting cell cycle progression at key checkpoint, thus inhibiting cell proliferation, as well as suppressing tumour metastasis. The PI3K-Akt pathway was implied to be involved in the regulatio

    Differential Regulation of Adhesion Complex Turnover by ROCK1 and ROCK2

    Get PDF
    ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes

    A Bacterial Cytotoxin Identifies the RhoA Exchange Factor Net1 as a Key Effector in the Response to DNA Damage

    Get PDF
    Background: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. Principal Findings: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoAdependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPKactivated protein kinase 2. Significance: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin ma

    Development of Transgenic Cloned Pig Models of Skin Inflammation by DNA Transposon-Directed Ectopic Expression of Human β1 and α2 Integrin

    Get PDF
    Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis

    The Dictyostelium discoideum acaA Gene Is Transcribed from Alternative Promoters during Aggregation and Multicellular Development

    Get PDF
    Background: Extracellular cAMP is a key extracellular signaling molecule that regulates aggregation, cell differentiation and morphogenesis during multi-cellular development of the social amoeba Dictyostelium discoideum. This molecule is produced by three different adenylyl cyclases, encoded by the genes acaA, acrA and acgA, expressed at different stages of development and in different structures. Methodology/Principal Findings: This article describes the characterization of the promoter region of the acaA gene, showing that it is transcribed from three different alternative promoters. The distal promoter, promoter 1, is active during the aggregation process while the more proximal promoters are active in tip-organiser and posterior regions of the structures. A DNA fragment containing the three promoters drove expression to these same regions and similar results were obtained by in situ hybridization. Analyses of mRNA expression by quantitative RT-PCR with specific primers for each of the three transcripts also demonstrated their different temporal patterns of expression. Conclusions/Significance: The existence of an aggregation-specific promoter can be associated with the use of cAMP as chemo-attractant molecule, which is specific for some Dictyostelium species. Expression at late developmental stages indicates that adenylyl cyclase A might play a more important role in post-aggregative development than previously considered

    CCN2 Is Required for the TGF-β Induced Activation of Smad1 - Erk1/2 Signaling Network

    Get PDF
    Connective tissue growth factor (CCN2) is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β3 integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the αvβ3 integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml) having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/αvβ3 integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis

    Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    Get PDF
    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore