35 research outputs found

    Monitoring the Long-Term Molecular Epidemiology of the Pneumococcus and Detection of Potential β€˜Vaccine Escape’ Strains

    Get PDF
    While the pneumococcal protein conjugate vaccines reduce the incidence in invasive pneumococcal disease (IPD), serotype replacement remains a major concern. Thus, serotype-independent protection with vaccines targeting virulence genes, such as PspA, have been pursued. PspA is comprised of diverse clades that arose through recombination. Therefore, multi-locus sequence typing (MLST)-defined clones could conceivably include strains from multiple PspA clades. As a result, a method is needed which can both monitor the long-term epidemiology of the pneumococcus among a large number of isolates, and analyze vaccine-candidate genes, such as pspA, for mutations and recombination events that could result in 'vaccine escape' strains.We developed a resequencing array consisting of five conserved and six variable genes to characterize 72 pneumococcal strains. The phylogenetic analysis of the 11 concatenated genes was performed with the MrBayes program, the single nucleotide polymorphism (SNP) analysis with the DNA Sequence Polymorphism program (DnaSP), and the recombination event analysis with the recombination detection package (RDP).The phylogenetic analysis correlated with MLST, and identified clonal strains with unique PspA clades. The DnaSP analysis correlated with the serotype-specific diversity detected using MLST. Serotypes associated with more than one ST complex had a larger degree of sequence polymorphism than a serotype associated with one ST complex. The RDP analysis confirmed the high frequency of recombination events in the pspA gene.The phylogenetic tree correlated with MLST, and detected multiple PspA clades among clonal strains. The genetic diversity of the strains and the frequency of recombination events in the mosaic gene, pspA were accurately assessed using the DnaSP and RDP programs, respectively. These data provide proof-of-concept that resequencing arrays could play an important role within research and clinical laboratories in both monitoring the molecular epidemiology of the pneumococcus and detecting 'vaccine escape' strains among vaccine-candidate genes

    Frontally mediated inhibitory processing and white matter microstructure: age and alcoholism effects

    Get PDF
    RationaleThe NOGO P3 event-related potential is a sensitive marker of alcoholism, relates to EEG oscillation in the Ξ΄ and ΞΈ frequency ranges, and reflects activation of an inhibitory processing network. Degradation of white matter tracts related to age or alcoholism should negatively affect the oscillatory activity within the network.ObjectiveThis study aims to evaluate the effect of alcoholism and age on Ξ΄ and ΞΈ oscillations and the relationship between these oscillations and measures of white matter microstructural integrity.MethodsData from ten long-term alcoholics to 25 nonalcoholic controls were used to derive P3 from Fz, Cz, and Pz using a visual GO/NOGO protocol. Total power and across trial phase synchrony measures were calculated for Ξ΄ and ΞΈ frequencies. DTI, 1.5Β T, data formed the basis of quantitative fiber tracking in the left and right cingulate bundles and the genu and splenium of the corpus callosum. Fractional anisotropy and diffusivity (Ξ»L and Ξ»T) measures were calculated from each tract.ResultsNOGO P3 amplitude and Ξ΄ power at Cz were smaller in alcoholics than controls. Lower Ξ΄ total power was related to higher Ξ»T in the left and right cingulate bundles. GO P3 amplitude was lower and GO P3 latency was longer with advancing age, but none of the time-frequency analysis measures displayed significant age or diagnosis effects.ConclusionsThe relation of Ξ΄ total power at CZ with Ξ»T in the cingulate bundles provides correlational evidence for a functional role of fronto-parietal white matter tracts in inhibitory processing

    Age modulates the effect of COMT genotype on delay discounting behavior

    No full text
    RATIONALE AND OBJECTIVE: A form of impulsivity, the tendency to choose immediate over delayed rewards (delay-discounting) has been associated with a single nucleotide polymorphism (SNP) in the catechol-O-methyltransferase (COMT) gene (COMTval(158)met; rs4680). However, existing data regarding the nature of this association conflicts. We have previously reported that adults homozygous for valine (val) at the COMTval(158)met SNP demonstrate greater delay-discounting than do methionine (met) allele carriers (Boettiger et al. 2007). In contrast, a recent study of adolescent males found that those with the met/met genotype demonstrate greater delay-discounting than do val-allele carriers (Paloyelis et al. 2010). Based on reported age-related changes in frontal dopamine function and COMT expression, we hypothesized that the association of COMT genotype with delay-discounting behavior is modulated by age from late adolescence to young adulthood. METHODS: To test this hypothesis, we genotyped late adolescents (18–21 years; n=72) and adults (22–40 years; n=70) for the COMTval(158)met polymorphism, measured their delay-discounting behavior, and tested for an interaction between age group and COMT genotype. RESULTS: This cross-sectional study found that age modulates COMTval(158)met genotype effects on delay-discounting behavior. Among met-carriers, delay-discounting was negatively correlated with age from late adolescence to adulthood, while among val/val individuals delay-discounting was positively correlated with age across this range. CONCLUSIONS: These results confirm our previous finding of enhanced delay-discounting among val/val adults relative to met-allele carriers, and help reconcile existing literature. We propose a single U-shaped model of the relationship between frontal DA levels and impulsive choice that accounts for both adolescent and adult data
    corecore