26 research outputs found
Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum x Lophopyrum elongatum disomic substitution lines.
Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred towheat by interspecific hybridization. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultivar Chinese Spring 9 Lophopyrum elongatum disomic substitution lines were tested for resistance to barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), the Hessian fly Mayetiola destructor, and the fungal pathogens Blumeria graminis and Mycosphaerella graminicola (asexual stage: Septoria tritici). Low resistance to BYDV occurred in some of the disomic substitution lines, but viral titers were significantly higher than those of two Lophopyrum species tested. This suggested that genes on more than one Lophopyrum chromosome are required for complete resistance to this virus. A potentially new gene for resistance to CYDV was detected on wheatgrass chromosome 3E. All of the
substitution lines were susceptible to Mayetiola destructor
and one strain of B. graminis. Disomic substitution lines containing wheatgrass chromosomes 1E and 6E were significantly more resistant to M. graminicola compared to Chinese Spring. Although neither chromosome by itself conferred resistance as high as that in the wheatgrass parent, they do appear to contain potentially new genes for resistance against this pathogen that could be useful for future plant-improvement programs
Intracellular coexpression of CXC- and CC– chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation
BackgroundChemokines have been implicated in tumor progression and metastasis. In melanoma, chemokine receptors have been implicated in organ selective metastasis by regulating processes such as chemoattraction, adhesion and survival.MethodsIn this study we have analyzed, using flow cytometry, the systems formed by the chemokine receptors CXCR3, CXCR4, CXCR7, CCR7 and CCR10 and their ligands in thirteen human melanoma cell lines (five established from primary tumors and eight established from metastasis from different tissues). WM-115 and WM-266.4 melanoma cell lines (obtained from a primary and a metastatic melanoma respectively) were xenografted in nude mice and the tumors and cell lines derived from them were also analyzed.ResultsOur results show that the melanoma cell lines do not express or express in a low degree the chemokine receptors on their cell surface. However, melanoma cell lines show intracellular expression of all the aforementioned receptors and most of their respective ligands. When analyzing the xenografts and the cell lines obtained from them we found variations in the intracellular expression of chemokines and chemokine receptors that differed between the primary and metastatic cell lines. However, as well as in the original cell lines, minute or no expression of the chemokine receptors was observed at the cell surface.ConclusionsCoexpression of chemokine receptors and their ligands was found in human melanoma cell lines. However, this expression is intracellular and receptors are not found at the cell membrane nor chemokines are secreted to the cell medium. The levels of expressed chemokine receptors and their ligands show dynamic variations after xenotransplantation that differ depending on the origin of the cell line (from primary tumor or from metastasis)
Human gingival fibroblasts produce nitric oxide in response to proinflammatory cytokines
Background: Although nitric oxide (NO) synthesis is increased in periodontal disease (PD), little is known about the possible sources of production by gingival tissues. In fact, gingival tissues from patients with periodontitis demonstrate greater levels of inducible nitric oxide (iNOS) expression than healthy tissue. Macrophages are the source of the iNOS expression, with endothelial cells also contributing. In the present study, our hypothesis has been that human gingival fibroblasts (HGF) also have the ability to produce NO. We have established for the first time that HGF express increased levels of iNOS and modulate NO synthesis in response to proinflammatory cytokines that act synergistically. Methods: NO production under basal conditions or following incubation with tumor necrosis factor (TNF-α), interleukin (IL)-1ß, and inferferon (IFN)-y was assessed by measurement of stable NO metabolites, nitrite, and nitrate, in a microplate adaptation of the Griess assay. Total RNA was isolated from HGF for determination of iNOS mRNA levels. Results: We have shown that NO production is elevated in HGF that are stimulated simultaneously by TNF-α, IL-1ß, and IFN-y. Northern blot analysis confirmed that the production of iNOS mRNA by HGF is upregulated in the presence of these cytokines. Addition of mercaptoethyl guanidine (MEG), a specific inhibitor of iNOS, profoundly reduced the production of NO in HGF. Non specific inhibitors of iNOS, L-NG-monomethyl arginine (L-NMMA), and L-arginine-methyl ester (L-NAME) had little or no effect on NO produced in HGF. Conclusions: These results suggest that elevated NO production could be important in the pathogenesis of PD, and also suggest the ability of an iNOS inhibitor to modulate the disease. Treatments with drugs to block the production of nitric oxide or block its effects might be therapeutically valuable
Epigenetic regulation during fetal femur development: DNA methylation matters
Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs), adult chondrocytes and STRO-1+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2) and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development, informing and opening new possibilities in development of strategies for bone repair/tissue engineering.<br/