297 research outputs found

    Utility of VS38c in the diagnostic and prognostic assessment of osteosarcoma and other bone tumours/tumour-like lesions

    Get PDF
    BACKGROUND: VS38c is a monoclonal antibody that recognises a rough endoplasmic reticulum (rER) intracellular antigen termed cytoskeleton-linking membrane protein 63. rER is typically found in viable tumour cells and is abundant in osteosarcoma cells. The aim of this study was to determine the diagnostic and prognostic utility of VS38c in the histological assessment of osteosarcoma and other bone tumours/tumour-like leisons. METHODS: Immunohistochemical staining with VS38c was carried out on formalin-fixed specimens of osteosarcoma (pre/post-chemotherapy) and a wide range of benign and malignant bone lesions. In addition, VS38c staining of cultures of MG63 and Sa0S2 osteosarcoma cell cultures. (±cisplatin and actinomycin D-treatment) was analysed. RESULTS: VS38c strongly stained tumour cells in all low-grade and high-grade osteosarcomas and in undifferentiated sarcomas and high-grade chondrosarcomas. There was little or no VS38c staining of low-grade chondrosarcomas or chordomas and variable staining of Ewing sarcomas. Osteoblasts in benign bone-forming tumours and mononuclear stromal cells in chondroblastomas, giant cell tumours and non-ossifying fibromas strongly stained for VS38c. VS38c staining was absent in cisplatin and actinomycin D treated Sa0S2 and MG63 cells. In specimens of osteosarcoma post-neoadjuvant therapy, VS38c staining was absent in most morphologically necrotic areas of tumor although some cells with pyknotic nuclei stained for VS38c in these areas. Most tumour cells exhibiting atypical nuclear forms were not stained by VS38c. CONCLUSIONS: Our findings show that VS38c is a sensitive but not specific diagnostic marker of osteosarcoma. Staining with VS38c identifies viable osteosarcoma cells, a feature which may be useful in the assessment of percentage tumour necrosis post-neoadjuvant chemotherapy

    Implant failure in bilateral metal-on-metal hip resurfacing arthroplasties: a clinical and pathological study

    Get PDF
    Metal-on-metal hip resurfacing arthroplasties (MoMHRAs) have a high failure rate due to pseudotumour formation. It is not certain whether pseudotumours in bilateral MoMHRAs form on the basis of an adverse reaction to metal debris (ARMD) that is entirely due to a local innate and adaptive immune response to Cobalt-Chrome (Co-Cr) wear particles. To determine if there is a systemic component to ARMD in bilateral MoMHRAs, we examined the histology of ARMD in unilateral and bilateral MoMHRAs revised for pseudotumour and determined whether implant survival differed between these two groups. Periprosthetic tissue specimens from 119 hips revised for pseudotumour were examined. These were derived from 109 patients including 10 patients with bilateral MoMHRAs and 99 with sunilateral MoMHRAs including a cohort of 20 patients with bilateral MoMHRAs that had undergone only one MoMHRA revision for pseudotumour. The mean time to revision for pseudotumour of unilateral and bilateral MoMHRAs was determined. The histology of periprosthetic tissue was examined for evidence of the innate and adaptive immune response and scored semi-quantitatively. There was no significant difference in histological features of the innate / adaptive response between Group 1 bilateral pseudotumours and Group 2 and Group 3 unilateral pseudotumours. Histological features, including ALVAL scores, were similar in the periprosthetic tissues of right and left hips in Group 1 bilateral MoMHRAs. The mean time to first revision for pseudotumour of bilateral MoMHRAs (6.59 years) was not decreased compared with unilateral MoMHRAs (5.66 years) or bilateral MoMHRAs that had only one revision (7.05 years). Right and left hip pseudotumours in bilateral MoMHRAs exhibit similar histological features of the innate and adaptive immune response. Mean implant survival is not decreased in bilateral compared with unilateral MoMHRA cases. The findings suggest that pseudotumour formation is due more to a local than a systemic innate /adaptive immune response to components of metal wear

    Cellular mechanisms of bone resorption in breast carcinoma

    Get PDF
    The cellular mechanisms that account for the increase in osteoclast numbers and bone resorption in skeletal breast cancer metastasis are unclear. Osteoclasts are marrow-derived cells which form by fusion of mononuclear phagocyte precursors that circulate in the monocyte fraction. In this study we have determined whether circulating osteoclast precursors are increased in number or have an increased sensitivity to humoral factors for osteoclastogenesis in breast cancer patients with skeletal metastases (± hypercalcaemia) compared to patients with primary breast cancer and age-matched normal controls. Monocytes were isolated and cocultured with UMR 106 osteoblastic cells in the presence of 1,25 dihydroxyvitamin D3[1,25(OH)2D3] and human macrophage colony stimulating factor (M-CSF) on coverslips and dentine slices. Limiting dilution experiments showed that there was no increase in the number of circulating osteoclast precursors in breast cancer patients with skeletal metastases (± hypercalcaemia) compared to controls. Osteoclast precursors in these patients also did not exhibit increased sensitivity to 1,25(OH)2D3 or M-CSF in terms of osteoclast formation. The addition of parathyroid hormone-related protein and interleukin-6 did not increase osteoclast formation. The addition of the supernatant of cultured breast cancer cell lines (MCF-7 and MDA-MB-435), however, significantly increased monocyte-osteoclast formation in a dose-dependent fashion. These results indicate that the increase in osteoclast formation in breast cancer is not due to an increase in the number/nature of circulating osteoclast precursors. They also suggest that tumour cells promote osteoclast formation in the bone microenvironment by secreting soluble osteoclastogenic factor(s). © 2001 Cancer Research Campaign http://www.bjcancer.co

    Multifocal invasive ductal breast cancer with osteoclast-like giant cells: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To the best of our knowledge, this is the first case report of a multifocal (trifocal) invasive carcinoma of the breast containing osteoclast-like giant cells.</p> <p>Case presentation</p> <p>A 64-year-old Caucasian woman presented for routine mammography screening with three radiodense lesions in the lower inner quadrant of the right breast, a primary breast cancer. Microscopic examination showed three foci of invasive ductal carcinoma with multinucleated osteoclast-like giant cells. Osteoclast-like giant cells in breast cancer are a rare phenomenon. They are described in less than two percent of all breast cancers and occur in association with invasive ductal cancer and invasive lobular cancer. In addition, osteoclast-like giant cells have been described in several sarcomas and metaplastic carcinomas of the breast.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first report of a multifocal infiltrating ductal carcinoma of the breast containing osteoclast-like giant cells. This could be an indication for a possible early event in carcinogenesis associated with a biological event or secretion that indicates the differentiation and/or migration of stromal cells or macrophages.</p

    Roles of hyaluronan in bone resorption

    Get PDF
    BACKGROUND: Hyaluronan, an unsulfated glycosaminoglycan, while being closely linked to osteoclast function several years ago, has received little attention lately. Given recent new knowledge of hyaluronan's possible cell binding abilities, it is important to re-examine the role of this polysaccharide in bone homeostasis. DISCUSSION: Previously published data demonstrating a linkage between induction of hyaluronan synthesis and osteoclast-mediated bone resorption are reviewed. Suggestions are made involving the cell binding ability of hyaluronan and its potential to mediate osteoclast binding to bone surfaces and its potential to serve as a diffusion barrier and participate in the sealing zone required for osteoclast-mediated bone resorption. SUMMARY: This brief article summarizes previous studies linking HA to bone resorption and suggests roles for hyaluronan in the process of bone resorption

    Unsatisfactory gene transfer into bone-resorbing osteoclasts with liposomal transfection systems

    Get PDF
    BACKGROUND: Bone-resorbing osteoclasts are multinucleated cells that are formed via fusion of their hematopoietic stem cells. Many of the details of osteoclast formation, activation and motility remain unsolved. Therefore, there is an interest among bone biologists to transfect the terminally differentiated osteoclasts and follow their responses to the transgenes in vitro. Severe difficulties in transfecting the large, adherent osteoclasts have been encountered, however, making the use of modern cell biology tools in osteoclast research challenging. Transfection of mature osteoclasts by non-viral gene transfer systems has not been reported. RESULTS: We have systematically screened the usefulness of several commercial DNA transfection systems in human osteoclasts and their mononuclear precursor cell cultures, and compared transfection efficacy to adenoviral DNA transfection. None of the liposome-based or endosome disruption-inducing systems could induce EGFP-actin expression in terminally differentiated osteoclasts. Instead, a massive cell death by apoptosis was found with all concentrations and liposome/DNA-ratios tested. Best transfection efficiencies were obtained by adenoviral gene delivery. Marginal DNA transfection was obtained by just adding the DNA to the cell culture medium. When bone marrow-derived CD34-positive precursor cells were transfected, some GFP-expression was found at the latest 24 h after transfection. Large numbers of apoptotic cells were found and those cells that remained alive, failed to form osteoclasts when cultured in the presence of RANKL and M-CSF, key regulators of osteoclast formation. In comparison, adenoviral gene delivery resulted in the transfection of CD34-positive cells that remained GFP-positive for up to 5 days and allowed osteoclast formation. CONCLUSION: Osteoclasts and their precursors are sensitive to liposomal transfection systems, which induce osteoclast apoptosis. Gene transfer to mononuclear osteoclast precursors or differentiated osteoclasts was not possible with any of the commercial transfection systems tested. Osteoclasts are non-dividing, adherent cells that are difficult to grow as confluent cultures, which may explain problems with transfection reagents. Large numbers of α(v)β(3 )integrin on the osteoclast surface allows adenovirus endocytosis and infection proceeds in dividing and non-dividing cells efficiently. Viral gene delivery is therefore currently the method of choice for osteoclast transfection

    Malignant melanoma and bone resorption

    Get PDF
    The cellular and humoral mechanisms accounting for osteolysis in skeletal metastases of malignant melanoma are uncertain. Osteoclasts, the specialised multinucleated cells that carry out bone resorption, are derived from monocyte/macrophage precursors. We isolated tumour-associated macrophages (TAMs) from metastatic (lymph node/skin) melanomas and cultured them in the presence and absence of osteoclastogenic cytokines and growth factors. The effect of tumour-derived fibroblasts and melanoma cells on osteoclast formation and resorption was also analysed. Melanoma TAMs (CD14+/CD51−) differentiated into osteoclasts (CD14−/CD51+) in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor. Tumour-associated macrophage-osteoclast differentiation also occurred via a RANKL-independent pathway when TAMs were cultured with tumour necrosis factor-α and interleukin (IL)-1α. RT–PCR showed that fibroblasts isolated from metastatic melanomas expressed RANKL messenger RNA and the conditioned medium of cultured melanoma fibroblasts was found to be capable of inducing osteoclast formation in the absence of RANKL; this effect was inhibited by the addition of osteoprotegerin (OPG). We also found that cultured human SK-Mel-29 melanoma cells produce a soluble factor that induces osteoclast differentiation; this effect was not inhibited by OPG. Our findings indicate that TAMs in metastatic melanomas can differentiate into osteoclasts and that melanoma fibroblasts and melanoma tumour cells can induce osteoclast formation by RANKL-dependent and RANKL-independent mechanisms, respectively

    A short-term in vivo model for giant cell tumor of bone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the lack of suitable <it>in vivo </it>models of giant cell tumor of bone (GCT), little is known about its underlying fundamental pro-tumoral events, such as tumor growth, invasion, angiogenesis and metastasis. There is no existing cell line that contains all the cell and tissue tumor components of GCT and thus <it>in vitro </it>testing of anti-tumor agents on GCT is not possible. In this study we have characterized a new method of growing a GCT tumor on a chick chorio-allantoic membrane (CAM) for this purpose.</p> <p>Methods</p> <p>Fresh tumor tissue was obtained from 10 patients and homogenized. The suspension was grafted onto the CAM at day 10 of development. The growth process was monitored by daily observation and photo documentation using <it>in vivo </it>biomicroscopy. After 6 days, samples were fixed and further analyzed using standard histology (hematoxylin and eosin stains), Ki67 staining and fluorescence <it>in situ </it>hybridization (FISH).</p> <p>Results</p> <p>The suspension of all 10 patients formed solid tumors when grafted on the CAM. <it>In vivo </it>microscopy and standard histology revealed a rich vascularization of the tumors. The tumors were composed of the typical components of GCT, including (CD51+/CD68+) multinucleated giant cells whichwere generally less numerous and contained fewer nuclei than in the original tumors. Ki67 staining revealed a very low proliferation rate. The FISH demonstrated that the tumors were composed of human cells interspersed with chick-derived capillaries.</p> <p>Conclusions</p> <p>A reliable protocol for grafting of human GCT onto the chick chorio-allantoic membrane is established. This is the first <it>in vivo </it>model for giant cell tumors of bone which opens new perspectives to study this disease and to test new therapeutical agents.</p

    Control of Cell Migration and Inflammatory Mediators Production by CORM-2 in Osteoarthritic Synoviocytes

    Get PDF
    BackgroundOsteoarthritis (OA) is the most widespread degenerative joint disease. Inflamed synovial cells contribute to the release of inflammatory and catabolic mediators during OA leading to destruction of articular tissues. We have shown previously that CO-releasing molecules exert anti-inflammatory effects in animal models and OA chondrocytes. We have studied the ability of CORM-2 to modify the migration of human OA synoviocytes and the production of chemokines and other mediators sustaining inflammatory and catabolic processes in the OA joint.Methodology/Principal FindingsOA synoviocytes were stimulated with interleukin(IL)-1β in the absence or presence of CORM-2. Migration assay was performed using transwell chambers. Gene expression was analyzed by quantitative PCR and protein expression by Western Blot and ELISA. CORM-2 reduced the proliferation and migration of OA synoviocytes, the expression of IL-8, CCL2, CCL20, matrix metalloproteinase(MMP)-1 and MMP-3, and the production of oxidative stress. We found that CORM-2 reduced the phosphorylation of extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2 and to a lesser extent p38. Our results also showed that CORM-2 significantly decreased the activation of nuclear factor-κB and activator protein-1 regulating the transcription of chemokines and MMPs in OA synoviocytes.Conclusion/SignificanceA number of synoviocyte functions relevant in OA synovitis and articular degradation can be down-regulated by CORM-2. These results support the interest of this class of agents for the development of novel therapeutic strategies in inflammatory and degenerative conditions
    corecore