49 research outputs found

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности литичСского стафилококкового Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ph20 ΠΈ литичСского Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° синСгнойной ΠΏΠ°Π»ΠΎΡ‡ΠΊΠΈ ph57 ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π² ортопСдичСскиС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ конструкции ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° (костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°)

    Get PDF
    Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods: Β First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction Β temperatures (+6…+25Β°C and +18…+50Β°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50Β°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25Β°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25Β°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.ОбоснованиС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ…Β Π²Β ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ‚ ΠΎΡΡ‚Π°Π²Π°Ρ‚ΡŒΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ, нСзависимо ΠΎΡ‚ использованного для ΠΈΡ… изготовлСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ внимания Π·Π°ΡΠ»ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅Β Π²Β ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»ΡΡŽΡ‚ exΒ tempore (ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ надобности) ΠΈΠ· ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΏΡ€ΠΈ ортопСдичСских хирургичСских Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°Ρ… (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ костный Ρ†Π΅ΠΌΠ΅Π½Ρ‚). Π—Π°Ρ‰ΠΈΡ‚Π° Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β Π½ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΠ² подвСргаСтся мноТСствСнной ΠΊΡ€ΠΈΡ‚ΠΈΠΊΠ΅, поэтому в качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ°ΠΌ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ литичСскиС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΈ, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ рядом ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… прСимущСств, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ возмоТности ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Β ΠΈΒ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности в таких условиях в литСратурС Π½Π΅ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ. ЦСль исслСдования ― ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ физичСского размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π΅Β ΠΈ Π²Β ΠΌΠΎΠ΄Π΅Π»ΠΈΒ inΒ vitroΒ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ литичСский Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ эффСкт Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² ΠΏΡ€ΠΈ ΠΈΡ… ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈΒ Π²Β ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΉ exΒ tempore ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ.Β ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ этапом Π±Ρ‹Π»Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π°Β Π°Ρ‚ΠΎΠΌΠ½ΠΎ-силовая микроскопия (АБМ) ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π° мСдицинского назначСния для выяснСния наличия и размСров ΠΊΠ°Π²Π΅Ρ€Π½, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π²ΡˆΠΈΡ…ΡΡ послС Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси (+6…+25 Β°CΒ ΠΈΒ +18…+50 Β°C). Π’Ρ‚ΠΎΡ€Ρ‹ΠΌ этапом inΒ vitro Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° импрСгнация Π΄Π²ΡƒΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² (ph20, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ StaphylococcusΒ aureus,Β ΠΈΒ ph57, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎΒ Π²Β ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ PseudomonasΒ aeruginosa)Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ Π½Π° этапС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈΒ ΡΒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΡ… Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности.Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β Π’Β Ρ…ΠΎΠ΄Π΅ выполнСния АБМ установлСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ размСщСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΊΠ°Π²Π΅Ρ€Π½Π°Ρ… ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚Π°: ΠΌΠ΅Π΄ΠΈΠ°Π½Π° сСчСния и глубины ΠΊΠ°Π²Π΅Ρ€Π½ Π½Π° внСшнСй повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +18…+50 Β°C, составила 100,0Β ΠΈΒ 40,0Β Π½ΠΌ соотвСтствСнно,Β Π°Β Π½Π° повСрхности ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ скола образца ― 120,0Β ΠΈΒ 100,0Β Π½ΠΌ соотвСтствСнно, Ρ‡Ρ‚ΠΎ статистичСски Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΎΡ‚ гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΊΠ°Π²Π΅Ρ€Π½ ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ +6…+25 Β°C. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ активности ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠΏΡ€Π΅Π³Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ +6…+25 Β°CΒ Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ стафилококковый Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph20 ΡƒΡ‚Ρ€Π°Ρ‚ΠΈΠ» эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΡƒΠΆΠ΅Β Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΡˆΠ΅ΡΡ‚ΠΈ суток с момСнта Π½Π°Ρ‡Π°Π»Π° экспСримСнта, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ синСгнойный Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Β ph57 сохранял эффСктивный Ρ‚ΠΈΡ‚Ρ€ ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΒ Π²Β Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 13 сут.Β Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. В исслСдовании Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡ€Π΅Π³Π½Π°Ρ†ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²Β Π²Β ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΌΠ΅Ρ‚Π°ΠΊΡ€ΠΈΠ»Π°Ρ‚ мСдицинского назначСния с поддСрТаниСм эффСктивного Ρ‚ΠΈΡ‚Ρ€Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ эмиссии Π²ΠΎ внСшнюю срСду, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΠΏΡƒΡ‚ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ примСнСния Ρ‚Π°ΠΊΠΎΠ³ΠΎ способа доставки бактСриофагов в клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅. Π’Π°ΠΊΠΆΠ΅ сдСланы прСдполоТСния о вСроятной подвСрТСнности Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ² агрСссивным воздСйствиям со стороны химичСских ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² «костного Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π°Β» ΠΈ/ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ строгого ΠΎΡ‚Π±ΠΎΡ€Π° ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹Ρ… для ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ способа доставки ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³ΠΎΠ²

    Invasive aspergillosis in patients with COVID-19 in intensive care units: results of a multicenter study

    Get PDF
    Objective. To study risk factors, clinical and radiological features and effectiveness of the treatment of invasive aspergillosis (IA) in adult patients with COVID-19 (COVID-IA) in intensive care units (ICU). Materials and Methods. A total of 60 patients with COVID-IA treated in ICU (median age 62 years, male – 58%) were included in this multicenter prospective study. The comparison group included 34 patients with COVID-IA outside the ICU (median age 62 years, male – 68%). ECMM/ISHAM 2020 criteria were used for diagnosis of CAPA, and EORTC/MSGERC 2020 criteria were used for evaluation of the treatment efficacy. A case-control study (one patient of the main group per two patients of the control group) was conducted to study risk factors for the development and features of CAPA. The control group included 120 adult COVID-19 patients without IA in the ICU, similar in demographic characteristics and background conditions. The median age of patients in the control group was 63 years, male – 67%. Results. 64% of patients with COVID-IA stayed in the ICU. Risk factors for the COVID-IA development in the ICU: chronic obstructive pulmonary disease (OR = 3.538 [1.104–11.337], p = 0.02), and prolonged (> 10 days) lymphopenia (OR = 8.770 [4.177–18.415], p = 0.00001). The main location of COVID-IA in the ICU was lungs (98%). Typical clinical signs were fever (97%), cough (92%), severe respiratory failure (72%), ARDS (64%) and haemoptysis (23%). Typical CT features were areas of consolidation (97%), hydrothorax (63%), and foci of destruction (53%). The effective methods of laboratory diagnosis of COVID-IA were test for galactomannan in BAL (62%), culture (33%) and microscopy (22%) of BAL. The main causative agents of COVID-IA are A. fumigatus (61%), A. niger (26%) and A. flavus (4%). The overall 12-week survival rate of patients with COVID-IA in the ICU was 42%, negative predictive factors were severe respiratory failure (27.5% vs 81%, p = 0.003), ARDS (14% vs 69%, p = 0.001), mechanical ventilation (25% vs 60%, p = 0.01), and foci of destruction in the lung tissue on CT scan (23% vs 59%, p = 0.01). Conclusions. IA affects predominantly ICU patients with COVID-19 who have concomitant medical conditions, such as diabetes mellitus, hematological malignancies, cancer, and COPD. Risk factors for COVID-IA in ICU patients are prolonged lymphopenia and COPD. The majority of patients with COVID-IA have their lungs affected, but clinical signs of IA are non-specific (fever, cough, progressive respiratory failure). The overall 12-week survival in ICU patients with COVID-IA is low. Prognostic factors of poor outcome in adult ICU patients are severe respiratory failure, ARDS, mechanical ventilation as well as CT signs of lung tissue destruction

    Change in the soils’ fertility level of tea agrocenoses in the transition to cultivation without mineral fertilizers in the humid-subtropical zone of Russia

    No full text
    Research was carried out on the basis of preserved field multifactor experiment on tea crop (Camellia sinensis (L.) Kuntze) in the conditions of the Sochi Black Sea coast. The application of NPK fertilizers in different doses and combinations according to the experimental scheme was carried out annually from 1986 to 2011. Since 2012, the use of fertilizers has been completely discontinued. The fertility indicators of long-fertilized brown forest acidic soils (in layers 0-20/20-40 cm) were compared with those after 7-8 years of fertilizer withdrawal. During the period of fertilizers’ application, the level of soils’ nitrogen supply significantly exceeded the control (by 30-75/30-56 mg/kg depending on the doses of nitrogen fertilizers). After the fertilizers’ discontinuity, nitrogen supply level equalization occurred in all experimental options. The content of labile phosphorus in soils previously fertilized with high phosphorus doses (120 kg P2O5 ha-1 year-1 and more), during the period of experiment’s conservation decreased by 450-500/350-450 mg/kg, but exceeded the control in 2-2.5 times; in soils previously fertilized by low doses, the indicators have not changed significantly. In soils highly supplied with labile potassium, the content of the element decreased by 70-140 mg/kg. The yield of tea in 2019-2020 was equally low (12-26 cwt/ha) on all options, 2.2-3 times lower than fertilized plantations. After the fertilizers’ withdrawal, there was a decrease in acidity (an average increase in pH by 0.18-0.24/0.12-0.20 units) of agrogenic-acidized soils and an increase in their oppressed respiratory activity (on average by 1.6 times). These changes reflect the tendency of soil self-restoration after the removal of the fertilizers’ load

    Imperative and dispositive norms in legal regulation of genetic research in Russia

    No full text
    Β© 2020, Universidad del Zulia. All rights reserved. The article is devoted to the analysis of diverse utilization varieties of regulatory framework at adjusting genetic techniques and global legal practice research. Internal determinants of the development of national systems and external universal laws of legal transformation influence the evolution of views of the professional community of lawyers in Russia and in foreign countries, regarding the choice of dispositive or mandatory ways of regulating genetic research. The discussion on a number of legal institutions and on the choice of effective methods and forms of legal regulation in the world and Russian legal practice continues

    Quality of life - the factor of Russia success at present and in the future

    No full text
    The quality of life and human development - these concepts are substantial characteristics of contemporary approaches to the challenges of economic growth and development of society. The quality of life in contemporary quality concepts means the integrated characteristics of social-economic, political, cultural-ideologic, ecologic factors and living conditions and social status of a person. State policy in the field of regulating population’s quality of life and living standards is the basis of creating totally new work force, essential needs in material wealth, life quality and working conditions indicators. We consider the definition "quality of life" within the concept of human development to define the system of the factors influencing it. We review the modern approaches to the analysis of the quality of life. Features and aspects of quality of life are considered, its role in social and economic development of the country is analysed. The main criteria define specifics of human development and social wellbeing of the population. To evaluate the quality of life of the population we use the statistical analysis of the United Nations (UN), Human Development Index (HDI).We conclude that the level of life is an integrated social and economic category that presents the level of development of physical, immaterial and social needs which influence the quality of life and population wellbeing Index

    Digital Economy and Digital Twins. Main Research Area

    No full text
    The work is devoted to the consideration and research of methods for transforming economic structures that underlie the transition to the dominant digital task of economic processes and their relationship with digital forms of representing economic relations. The main stages of the possible assignment of enterprises and the levels of building digital twins have been determined. Using the example of an object that belongs to the external area of ​​the enterprise – the supplier of the constituent components of the product – it is shown how the transition to the digital form of this object can be built.ΠœΠ΅Ρ‚Π° Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ – Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΡƒΠ²Π°Ρ‚ΠΈ основні Π΅Ρ‚Π°ΠΏΠΈ, які Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Ρ…Ρ–Π΄ Π²Ρ–Π΄ Π·Π²ΠΈΡ‡Π°ΠΉΠ½ΠΈΡ… підприємств Π΄ΠΎ ΠΉΠΎΠ³ΠΎ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ подання (Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²Ρ–ΠΉΠ½ΠΈΠΊΠ°) Π² ΡƒΠΌΠΎΠ²Π°Ρ… ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρƒ Π΄ΠΎ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΡ— Π΅ΠΊΠΎΠ½ΠΎΠΌΡ–ΠΊΠΈ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ основныС этапы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ опрСдСлят ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… прСдприятий ΠΊ ΠΈΡ… Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΈΡŽ (Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΌΡƒ Π΄Π²ΠΎΠΉΠ½ΠΈΠΊΡƒ) Π² условиях ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΊ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠΉ экономикС

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° для опрСдСлСния Ρ†ΠΈΠ»ΠΈΠ°Ρ€Π½ΠΎΠ³ΠΎ нСйротрофичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π² слСзной Тидкости Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    No full text
    The concentration of ciliary neurotrophic factor (CNTF) was measured in lacrimal fluid (LF) using Human CNTF Quantikine ELISA kit (β€œR&D Systems”, USA) on a ChemWell 2910 automatic analyzer (β€œAwareness Technology Inc.”, USA). We initially attempted to use commercial kits, designed for serum and plasma CNTF detection, to quantify lacrimal CNTF. The results, however, were rarely above the minimum detection level of the kits, most likely due to matrix complexity and low concentrations of CNTF in diluted LF (LF had to be diluted because of the small volume of collected samples). The optimal sensitivity and the lowest background for the best minimum quantifiable value were determined empirically. Phosphate buffer solution containing 1% bovine serum albumin was selected as an optimal diluent for CNTF measurements in small fluid samples. A standard curve was produced using the calibrating solutions 0-250 pg/ml. Acid treatment of LF samples before the analysis allowed to increase the detectable concentration of the CNTF two-fold. The 1:3 dilution was selected based on the available volume of collected LF and a reasonable variation coefficient. The described protocol allowed to develop a sandwich ELISA optimized for lacrimal CNTF.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†ΠΈΠ»ΠΈΠ°Ρ€Π½ΠΎΠ³ΠΎ нСйротрофичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° – ciliary neurotrophic factor (CNTF) Π² слёзной Тидкости (Π‘Π–) Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ€ΡƒΡ‚ΠΈΠ½Π½Ρ‹ΠΌΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½ΠΎ ΠΈΠ·-Π·Π° Π΅Π³ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π² структурах Π³Π»Π°Π·Π° ΠΈ нСдостаточного количСства ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° для Π°Π½Π°Π»ΠΈΠ·Π°. Π‘Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ условия для опрСдСлСния CNTF Π² Π‘Π– Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (ИЀА) Π½Π° основС Π½Π°Π±ΠΎΡ€Π° Human CNTF Quantikine ELISA Kit (β€œR&D Systems”, БША) с использованиСм автоматичСского ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° ChemWell 2910 Combi (β€œAwareness Technology Inc.”, БША). ΠŸΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ кислотная ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡ€ΠΎΠ± Π‘Π– ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²Π΄Π²ΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ CNTF. ΠŸΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ автоматизированная систСма провСдСния Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π²Ρ‹Π±ΠΎΡ€ разбавитСля с Π½ΠΈΠ·ΠΊΠΎΠΉ оптичСской ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ Π±Π»Π°Π½ΠΊΠ° (0.011) обСспСчили Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΡ‚ 0 Π΄ΠΎ 250 ΠΏΠ³/ΠΌΠ» с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ Π΅Π³ΠΎ использования для расчСта ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ CNTF Π² области Π½ΠΈΠ·ΠΊΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π Π°Π±ΠΎΡ‡ΠΈΠ΅ характСристики ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ тСст-систСмы ИЀА (Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΏΡ€Π΅Π΄Π΅Π» обнаруТСния, Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ, интСрфСрСнция ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹) Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ соотвСтствовали критСриям приСмлСмости для ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° опрСдСлСния. Π Π°Π·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π‘Π– Π² Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ€Π°Π·Π°, совмСщённоС с кислотной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΏΡ€ΠΎΠ±, оказалось ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ для получСния ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π°Π½Π°Π»ΠΈΠ·Π°. Π’ этом случаС концСнтрация CNTF Π² ΠΏΡ€ΠΎΠ±Π΅ составляла Π² срСднСм 10.4Β±0.4 ΠΏΠ³/ΠΌΠ» с коэффициСнтом Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ 4.2% ΠΈ Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒΡŽ опрСдСляСмых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΊ ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΡ‹ΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 104%
    corecore