18 research outputs found

    Relatório de estágio na Câmara Municipal de Ourém

    Get PDF
    O presente relatório enquadra-se no âmbito do trabalho final do curso Mestrado em Reabilitação Urbana, do Instituto Politécnico de Tomar. O estágio decorreu na Câmara Municipal de Ourém e teve como objeto, participar na coordenação com a Divisão Obras Municipais, Divisão da Ação Cultural e Divisão de Educação e Assuntos Sociais em intervenções a nível da Reabilitação Urbana. O estágio numa Câmara Municipal foi a opção que pareceu mais enriquecedora para conclusão do Mestrado em Reabilitação Urbana e para o futuro da minha vida profissional. Esta opção de estágio deve-se ao desejo de poder aplicar alguns dos conhecimentos obtidos ao longo do Mestrado, de conhecer a realidade do trabalho em obra e inserido numa equipa profissional, fiscalizadora, lidando com as responsabilidades inerentes à profissão. O relatório aborda quatro casos de estudo, respeitante às reabilitações, 1ª fase de intervenção na capela de São Sebastião em Atouguia, 2ª fase da reabilitação de zona de lazer no Agroal, freguesia de Formigais, 1ª fase de intervenção da capela da Perucha e reforço do pontão de Caxarias. Acompanhamento de pequenas reabilitações, reclamadas por juntas de freguesia e munícipes. O relatório procura descrever os procedimentos adotados no acompanhamento das obras de reabilitação e para fácil entendimento as descrições são acompanhadas por fotografias

    Potent and broad HIV-neutralizing antibodies in memory B cells and plasma

    Get PDF
    Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. Antibody 10E8, reactive with the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1–specific memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an HIV-1–infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains

    Ecophysiological investigations on the oyster, Crassostrea gigas, in Flensburg Fjord

    No full text
    The growth, mortality and chemical composition of Crassostrea gigas in Flensburg Fjord (Western Baltic) were followed over an annual cycle. Water temperature, salinity, pH, oxygen levels, total seston content, and chlorophyll a and phaeopigment levels were monitored during the same period. The oysters grew from 7 to 24 g total wet weight (230 to 890 mg dry meat weight) during the sampling period. The main growth phase was from April to September. The combination of strongly reduced salinity (about 15%) and salinity fluctuations during the summer are considered primarily responsible for the oysters' slow growth. Mortality reached almest 50% in spring, probably due to the coincidence of salinity changes and freezing temperatures during the preceding winter; otherwise, mortality was zero. Most oysters formed gel blisters during the summer, presumably because of salinity stress and toxic effects of tributyl tin compounds. Protein levels were about 40% of the ash-free dry meat weight during most of the year, with a peak of almost 60% in August. Glycogen levels were nearly constant at about 30% most of the time, dropping to 9% during gametogenesis from late spring until midsummer, and recovering immediately afterwards. Lipid levels were around 15% in summer and 11% the rest of the year. The oysters apparently failed to spawn, because of a sharp temperature decline in August, before gonad formation had been completed. The oysters did not present any physiological anomalies. The fluctuating and excessively low summer salinities, and perhaps low levels of primary production in late spring, present the main obstacles to commercial cultivation of C. gigas, as well as the risk of high spring mortalities after ice-winters. Oyster cultivation sites in the Baltic should be placed at locations where currents can be expected, and the immediate vicinity of heavily frequented ports should be avoided

    Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys

    No full text
    A recombinant adenovirus serotype 5 (rAd5) vector-based vaccine for HIV-1 has recently failed in a phase 2b efficacy study in humans. Consistent with these results, preclinical studies have demonstrated that rAd5 vectors expressing simian immunodeficiency virus (SIV) Gag failed to reduce peak or setpoint viral loads after SIV challenge of rhesus monkeys (Macaca mulatta) that lacked the protective MHC class I allele Mamu-A*01 (ref. 3). Here we show that an improved T-cell-based vaccine regimen using two serologically distinct adenovirus vectors afforded substantially improved protective efficacy in this challenge model. In particular, a heterologous rAd26 prime/rAd5 boost vaccine regimen expressing SIV Gag elicited cellular immune responses with augmented magnitude, breadth and polyfunctionality as compared with the homologous rAd5 regimen. After SIVMAC251 challenge, monkeys vaccinated with the rAd26/rAd5 regimen showed a 1.4 log reduction of peak and a 2.4 log reduction of setpoint viral loads as well as decreased AIDS-related mortality as compared with control animals. These data demonstrate that durable partial immune control of a pathogenic SIV challenge for more than 500 days can be achieved by a T-cell-based vaccine in Mamu-A*01-negative rhesus monkeys in the absence of a homologous Env antigen. These findings have important implications for the development of next-generation T-cell-based vaccine candidates for HIV-1. ©2009 Macmillan Publishers Limited. All rights reserved

    HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates.

    No full text
    The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4(+) and CD8(+) T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4(+) and CD8(+) T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4(+) and CD8(+) T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4(+) and CD8(+) T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection

    Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost.

    No full text
    The use of heterologous immunization regimens and improved vector systems has led to increases in immunogenicity of HIV-1 vaccine candidates in nonhuman primates. In order to resolve interrelations between different delivery modalities, three different poxvirus boost regimens were compared. Three groups of rhesus macaques were each primed with the same DNA vaccine encoding Gag, Pol, Nef, and gp140. The groups were then boosted with either the vaccinia virus strain NYVAC or a variant with improved replication competence in human cells, termed NYVAC-KC. The latter was administered either by scarification or intramuscularly. Finally, macaques were boosted with adjuvanted gp120 protein to enhance humoral responses. The regimen elicited very potent CD4 <sup>+</sup> and CD8 <sup>+</sup> T cell responses in a well-balanced manner, peaking 2 weeks after the boost. T cells were broadly reactive and polyfunctional. All animals exhibited antigen-specific humoral responses already after the poxvirus boost, which further increased following protein administration. Polyclonal reactivity of IgG antibodies was highest against HIV-1 clade C Env proteins, with considerable cross-reactivity to other clades. Substantial effector functional activities (antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated virus inhibition) were observed in serum obtained after the last protein boost. Notably, major differences between the groups were absent, indicating that the potent priming induced by the DNA vaccine initially framed the immune responses in such a way that the subsequent boosts with NYVAC and protein led only to an increase in the response magnitudes without skewing the quality. This study highlights the importance of selecting the best combination of vector systems in heterologous prime-boost vaccination regimens.IMPORTANCE The evaluation of HIV vaccine efficacy trials indicates that protection would most likely correlate with a polyfunctional immune response involving several effector functions from all arms of the immune system. Heterologous prime-boost regimens have been shown to elicit vigorous T cell and antibody responses in nonhuman primates that, however, qualitatively and quantitatively differ depending on the respective vector systems used. The present study evaluated a DNA prime and poxvirus and protein boost regimen and compared how two poxvirus vectors with various degrees of replication capacity and two different delivery modalities-conventional intramuscular delivery and percutaneous delivery by scarification-impact several immune effectors. It was found that despite the different poxvirus boosts, the overall immune responses in the three groups were similar, suggesting the potent DNA priming as the major determining factor of immune responses. These findings emphasize the importance of selecting optimal priming agents in heterologous prime-boost vaccination settings

    Replication-Competent NYVAC-KC Yields Improved Immunogenicity to HIV-1 Antigens in Rhesus Macaques Compared to Nonreplicating NYVAC.

    No full text
    As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial.IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate

    Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost.

    No full text
    An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses
    corecore