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Abstract

Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. 

Antibody 10E8, reactive with the distal portion of the membrane-proximal external region 

(MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies 

and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1–specific 

memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an 

HIV-1–infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the 

same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells 

and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with 

other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was 

autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of 

memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains.

INTRODUCTION

Inducing broadly reactive neutralizing antibodies (bnAbs) is critical for developing a 

protective HIV-1 vaccine. bnAbs reactive with the envelope (Env) gp41 membrane-proximal 
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external region (MPER) have extensive neutralization breadth, and one of these, 10E8, 

reactive to the distal MPER, is one of the most broadly reactive HIV-1–neutralizing 

antibodies isolated to date (1–3). Two other MPER-binding gp41 bnAbs, 2F5 and 4E10, are 

both polyreactive, and their expression is limited by immune tolerance control in bnAb 

knock-in mice (4–7). In contrast, the 10E8 bnAb, in addition to potency and breadth, has 

lower reactivity with host molecules than 2F5 and 4E10 (1, 8–10). Thus, vaccine strategies 

for induction of 10E8-like antibodies are key to the development of an HIV-1 vaccine that 

can induce multiple broad and potent neutralizing antibody specificities.

Here, we have isolated a clonal lineage (DH511) of broad and potent Env gp41 distal MPER 

bnAbs from both memory B cells and plasma from an HIV-1–infected African individual, 

defined the DH511 developmental pathway, and demonstrated the reactivity of the DH511 

unmutated common ancestor (UCA) with the A subunit of the autoantigen ribonucleoprotein 

(RNP), providing a mechanism of bnAb induction. Plasma DH511 bnAb lineage members 

were equally as potent neutralizers of HIV-1 as were bnAbs derived from memory B cells. 

Moreover, a chimeric DH511 lineage antibody consisting of memory bnAb VH [variable 

region of immunoglobulin (Ig) heavy chain] and plasma bnAb VL (variable region of Ig light 

chain) was broader than 10E8 and neutralized 99% of the HIV-1 isolates tested.

RESULTS

Isolation of memory B cell distal MPER gp41–neutralizing antibodies

Plasma of an African HIV-1 clade C chronically infected individual (CH0210) contained C-

terminal (distal) MPER bnAb activity (11, 12). Six clonally related monoclonal antibodies 

(mAbs), designated DH511.1 to DH511.6 (named for antibody lineage “DH511,” with 

specific clonal lineage member “x” referred to as DH511.“x”), were isolated by antigen-

specific single memory B cell sorting using MPER peptide fluorophore-labeled probes (Fig. 

1, A and B, and table S1) (13). The DH511 B cell clonal lineage was distinguished by 

HCDR3 loops of 23 to 24 amino acids (table S1), and VH and VL somatic mutation rates 

were 15 to 22% and 14 to 18%, respectively. The DH511 clonal lineage was derived from 

the same heavy chain germline gene (VH3–15) as the 10E8 gp41 bnAb but used a different 

VL germline gene (DH511, Vκ1–39; 10E8, Vλ3–19) (table S1) (1). Antibody DH517, 

derived from a second clonal lineage arising from the same donor, was similarly isolated. 

DH517 used VH4–34 and Vλ3–19 germline genes, was 22.8 and 14.3 % mutated, 

respectively, and had a long HCDR3 loop of 24 amino acids (table S1).

DH511.1 to DH511.6 and DH517 mAbs were assessed for neutralization breadth and 

potency against a panel of 30 HIV-1 isolates (table S2, A and B). DH511 clonal members 

neutralized each of the 30 isolates tested, with median 50% inhibitory concentrations 

(IC50’s) ranging from 0.7 to 4.2 µg/ml (table S2A). DH517 had less breadth than DH511 

clonal lineage antibodies, neutralizing 15 of 30 isolates with a median IC50 of 5.7 µg/ml 

(table S2A). The most potent DH511 clonal lineage bnAb (DH511.2) neutralized 206 of 208 

viruses (99%) in a panel of geographically and genetically diverse HIV-1 Env pseudoviruses 

and was slightly more broad but less potent than 10E8 (203 of 208, 98%) (median IC50: 1.0 

µg/ml for DH511.2 and 0.4 µg/ml for 10E8) (Fig. 1, C and D, and table S3). DH511.2 

achieved >99% maximal neutralization for 93% of the isolates (Fig. 1E) and had similar 
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potency and breadth of neutralization against a second panel of 200 clade C primary HIV-1 

isolates (table S4). Analysis of the Ig constant region sequences revealed that the naturally 

VH/VL-paired mAbs of both DH511 and DH517 clonal lineages were of the IgG3 isotype, as 

were 2F5, 4E10, and 10E8 (table S1) (1, 14, 15). These data raise the hypotheses that these 

MPER bnAbs either arose from a pool of precursor B cells that preferentially undergo class 

switching to IgG3 (16) or required IgG3 antibody flexible hinge region for optimal binding 

to HIV-1 virions or both.

Isolation of plasma

We next analyzed the MPER-specific plasma antibody repertoire from the HIV-1–infected 

individual CH0210 using an independent proteomics-based approach for the identification 

and semiquantitative determination of antigen-specific antibodies in human serum (17, 18). 

MPER-specific antibodies were isolated from a plasma sample by affinity chromatography, 

processed for bottom-up proteomics (19), and subjected to liquid chromatography high-

resolution tandem mass spectrometry (LC-MS/MS) analysis. For peptide identification, we 

used a donor- specific VH database comprising 98,413 unique high-quality sequences found 

in the natively paired VH/VL repertoire [in which an 850–base pair (bp) linked VH/VL 

amplicon was obtained using a single-cell emulsion method] from 845,000 peripheral B 

cells (20–22).

Using stringent data-filtering protocols (19), we identified high-confidence peptide-spectrum 

matches (PSMs) from HCDR3 peptides and used their LC peak intensities for relative 

quantification. We have previously demonstrated that ∼80% of all HCDR3 peptides within a 

sample are identified in this manner (detection limit of about 0.4 ng/ml), and peak intensities 

correlated well with absolute peptide concentrations (17, 19).

Remarkably, we found that the MPER-specific plasma antibody repertoire consisted of three 

plasma Ig clonotypes (VH sequences having the same germline V and J genes and 85% 

amino acid identity in the HCDR3), each of which used the same VDJ (VH3–15, DH3–3, 

and JH6) as the DH511 clonal lineage (table S5). Clonotype IV comprised 95% of the total 

intensity of HCDR3 peptides detected in the MPER-specific antibody repertoire (i.e., in 

antibodies eluted after MPER peptide affinity chromatography); detection of HCDR1 and 

HCDR2 peptides unique to clonotype IV provided further support for the prevalence of this 

antibody in CH0210 plasma (table S6). Plasma clonotype II, which included memory B cell 

antibodies DH511.2, DH511.4, and DH511.5 upon phylogenetic analysis, and plasma 

clonotype III were detected at 4 and 1% relative abundance in plasma, respectively (Fig. 1F). 

Each of the three DH511 plasma clonotypes had HCDR3 lengths of 23 to 24 amino acids 

and VH gene mutation rates of 11 to 20% (table S5). Neither MPER bnAb DH517 nor 

DH511 clonotype I (Fig. 1F), which includes DH511.1, DH511.3, and DH511.6 bnAbs, was 

detected in plasma. However, we demonstrated that recombinant DH517 as well as 

DH511.1, DH511.3, and DH511.6 antibodies were readily detectable by MS, indicating that 

their absence from the CH0210 plasma was not a technical artifact of LC-MS/MS proteomic 

analysis.

Using the proteomically identified HCDR3 sequences, we searched the native VH/VL 

sequence database of 64,389 sequences to determine full-length VH/VL sequences belonging 
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to each clonotype (table S5). For plasma antibody clonotypes with multiple VH/VL somatic 

variants, the two most frequent variants, as quantified by the number of sequencing −25 

belonging to these clonotypes shared the same V and J gene identity (IGKV1-39 and IGKJ2) 

as did the light chains of the DH511 clonal lineage isolated by memory B cell single-cell 

sorting. Of the six plasma mAbs (designated DH511.7P to DH511.12P, with “P” indicating 

plasma origin), DH511.11P and DH511.12P demonstrated the most potent neutralizing 

activity against a panel of four HIV-1 isolates (table S7). In a panel of 208 HIV-1 isolates, 

DH511.11P and DH511.12P had slightly increased breadth and potency compared with 

DH511.2 [207 of 208 (99.5%) of the isolates tested] but were also slightly less potent than 

10E8 (median IC50: 0.8 µg/ml for DH511.11P and 0.7 µg/ml for DH511.12P versus 1.0 

µg/ml for DH511.2 and 0.4 µg/ml for 10E8) (table S8).

Engineered bnAb for enhanced potency

Thirty-five chimeric mAbs were produced by swapping the heavy and light chains of 

DH511.2 with those of plasma DH511 lineage members. One chimeric mAb, DH511.2_K3 

(composed of the memory B cell DH511.2 heavy chain with the light chain of plasma- 

derived DH511.8P), showed greater breadth and potency compared with 10E8 (table S9). 

DH511.2_K3 neutralized 206 of 208 (99%) global isolates (median IC50: 0.37 µg/ml for 

DH511.2_K3 and 0.39 µg/ml for 10E8) (table S10) and neutralized 100% of 100 primary 

clade C HIV-1 isolates (IC50, <50 µg/ml), displaying both greater breadth and potency than 

10E8 in this panel [10E8 breadth, 97% (IC50, <25 µg/ml); IC50: 0.36 µg/ml for DH511.2_K3 

and 0.5 µg/ml for 10E8] (table S11).

Structural analysis of memory B cell, plasma, and chimeric DH511 lineage bnAbs

Similar to the epitopes recognized by 4E10 and 10E8 (1), enzyme-linked immunosorbent 

assay (ELISA) analysis revealed that DH511 lineage antibodies derived from B memory 

cells or plasma were sensitive to alanine mutations at Asn671gp41 and Trp672gp41 but, unlike 

4E10 and 10E8, were also sensitive to Asp674Alagp41 and, to a lesser extent, to 

Leu679Alagp41 mutations (fig. S1 and table S12). In contrast, the DH517 bnAb had a 

distinct footprint comprising amino acids in both the proximal and distal MPER (fig. S1). 

Neutralization activity of DH511.1 to DH511.6, DH511.11P, DH511.12P, and DH511.2_K3 

mAbs against clade C COT6.15 Env pseudoviruses bearing alanine substitutions across the 

MPER (table S13) (23, 24) demonstrated neutralization sensitivity to Env mutations at 

Phe673Alagp41, Asp674Alagp41, and Asp674Sergp41, with the most prominent resistance 

observed against the Trp672Alagp41 mutant virus (table S14). 10E8 was weakly sensitive in 

neutralization to Asp674Alagp41 mutation as well.

Crystal structures of the antigen-binding fragments (Fab) of the distal MPER bnAb DH511.1 

in complex with a peptide spanning the full gp41 MPER (residues 656 to 683) (25), of the 

DH511.2 antibody in complex with gp41 peptides spanning residues 662 to 683 and 670 to 

683, and of the unliganded variant DH511.4 were determined at resolutions of 2.7, 2.6, 2.2, 

and 1.5 Å, respectively (Fig. 2, figs. S2 and S3, and tables S15 and S16). Both memory B 

cell–derived DH511.1 and DH511.2 recognized an α-helical conformation of the distal 

portion of the gp41 MPER (residues 671 to 683) (Fig. 2A), similar to the conformation 

recognized by neutralizing antibodies 10E8 and 4E10 (Fig. 2B), with Cα root mean square 
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deviations (RMSDs) of <0.46 Å for this region across all structures. An extended 

conformation of gp41 MPER was observed between residues 662 and 670 in both the 

DH511.1 and DH511.2 structures, and in the case of DH511.1, an additional α helix was 

observed between residues 656 and 661, which was present at a lattice contact. Overall, the 

highest degree of structural homology for bound MPER occurred between gp41 residues 

668 and 683, with a Cα RMSD of 0.39 Å (Fig. 2, A and C). Interactions between DH511.1 

and DH511.2 and gp41 MPER were mediated exclusively by their heavy chains, with a 

contact interface of 674 to 751 Å2 on the antibodies and of 773 to 779 Å2 on gp41 (table 

S17). VH3–15–encoded regions accounted for 45 to 50% of the interface with gp41, and 

HCDR3 loops accounted for 50% or more of the remaining interface (Figs. 2C and 3A and 

tables S17 and S18). gp41 residues Asn671gp41, Trp672gp41, Asp674gp41, and Leu679gp41, 

for which antibody binding was ablated or reduced when mutated to alanine, were all 

observed at the antibody interface (Fig. 2C and tables S18 and S19).

Crystal structures of plasma-derived DH511.11P and DH511.12P Fabs were determined in 

complex with a peptide spanning gp41 MPER residues 662 to 683 at resolutions of 2.47 and 

1.88 Å, respectively (Fig. 2, F and G, and tables S15 and S16). Both plasma-derived variants 

recognized a conformation of MPER similar to that recognized by memory B cell–derived 

DH511.1 and DH511.2, adopting an α helix between residues 671 and 683 and an extended 

conformation between residues 662 and 670. Despite a ∼26 to 28% sequence divergence 

between the VH regions of the plasma and memory B cell–derived variants, their respective 

structures were highly homologous. Cα atom superpositions yielded RMSDs of between 0.7 

to 1.6 Å for their full light and heavy chain variable regions, and of ∼0.36 Å for their bound 

peptides. Interactions between DH511.11P and DH511.12P and gp41 were mediated 

exclusively by their heavy chains, similar to DH511.1 and DH511.2, with contact interfaces 

of 605 to 650 Å2 on the antibodies and 669 to 680 Å2 on gp41 (Fig. 2 and table S17). The 

plasma-derived variants recognized the same distal gp41 MPER residues (between 668 and 

683) as those recognized by memory B cell–derived variants, although some interactions, 

such as with Asp674gp41, were mediated through different sets of antibody residues (Fig. 2, 

C and G, and tables S18 and S19).

Comparison of the directions of approach of antibodies DH511.1, DH511.2, 10E8, and 4E10 

to gp41 MPER, as defined by an axis drawn from a spatial position midway between the 

variable region disulfide bonds to the Cα atom of residue Phe673gp41, revealed that all three 

antibody lineages approached distal MPER from generally similar directions (Fig. 2E). Pair-

wise comparisons of directions of approach relative to DH511.1 yielded angular differences 

of 4.7°, 13.4°, and 25.2° for antibodies DH511.2, 10E8, and 4E10, respectively (Fig. 2E). 

Whereas the DH511 lineage closely resembled 10E8 in its approach to the epitope, a 

rotational shift of ∼54° around their relative directional axes was observed between the two 

lineages (Fig. 2, A and B), as evident in the rotation of their respective gp41 interfaces (Fig. 

3A). Despite this rotation, five common VH3–15 residue positions were nonetheless 

involved in interactions with gp41 in both lineages: residues 28, 31, and 33 within the 

HCDR1 and residues 52c and 53 within the HCDR2 (Figs. 2, C and D, and 3, A and B).

The crystal structure of the chimeric plasma/memory B cell bnAb DH511.2_K3 was 

determined at a resolution of 1.76 Å in complex with a peptide spanning gp41 MPER 
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residues 670 to 683. The structure revealed that DH511.2_K3 recognized a conformation of 

gp41 MPER similar to that recognized by DH511.2 (Cα RMSD of 0.23 Å) (Fig. 2, H and I, 

and tables S15 and S16), mediated by its structurally conserved common heavy chain with 

DH511.2 (Cα RMSD of 0.39 Å). As in the case of DH511.2, the interface between 

DH511.2_K3 and gp41 was mediated exclusively by the heavy chain, burying surface areas 

of 667 and 760 Å2 on the antibody and peptide, respectively, and maintaining an almost 

identical set of residue contacts with gp41 (Fig. 3B and tables S17 to S19). A large 

conformational shift was observed in the light chain LCDR3 loop of DH511.2_K3 (Fig. 2J), 

although its role in DH511.2_K3’s enhanced potency is currently unknown.

A signature amino acid was identified at position 671 that was statistically strongly 

associated with viruses that were sensitive to neutralization by DH511 bnAbs (DH511.2, 

DH511.11P, DH511.12P, and DH511.2_K3), but not neutralized by 10E8. Both antibodies 

are broadly cross-reactive, and there were only three Env pseudoviruses in the global panel 

(tables S3, S8, and S10) sensitive to the DH511 lineage and 10E8-resistant. In the clade C 

panel (table S4), there were four viruses with this phenotype. The signature was identified 

using a phylogenetically corrected contingency analysis, scanning the full Env protein 

alignment to identify any amino acids associated with DH511’s increased breadth (26, 27), 

and we required a q value (false discovery rate) of <0.2 (26) to be deemed of interest. Both 

viruses with Asn and Ser at position 671 were sensitive to both antibodies, whereas DH511 

sensitivity and 10E8 resistance were significantly associated with a Thr at position 671 [P = 

0.000025, q = 0.004 for the M group global panel data; P = 0.000038, q = 0.046 for the 

clade C, based on IC80 sensitivity; the IC50 sensitivity was also highly significant]. The 

specific 10E8 resistance conferred by Thr671 was supported by structural modeling, which 

showed that the interaction of the two antibodies in the immediate vicinity of Env 671 is 

very distinctive and that a Thr substitution resulted in a structural clash with 10E8 that was 

not evident with DH511 bnAbs, whereas Asn671 and Ser671 were compatible with both 

bnAbs (Fig. 4). An earlier study showed that a substitution of Ala at 671 can confer 

resistance to 10E8 (1). Whereas viruses that were resistant to 10E8 and sensitive to DH511 

bnAbs carried the Thr671 substitution, it is interesting to note that 13 viruses that carried 

Thr671 remained sensitive to 10E8, suggesting that other mutations in Env can also mitigate 

a clash at Thr671.

DH511 clonal lineage development and immunogen design

A maximum likelihood phylogenetic tree was constructed from VH/VL natively paired 

memory B cell VDJ sequences recovered from single-cell sorting to infer the UCA of clone 

DH511 and six intermediate antibodies (I1 to I6) (Fig. 1B). A global panel (28) of 12 HIV-1 

isolates was used to assess the development of neutralization breadth in the DH511 clonal 

lineage. None of the isolates were neutralized by the UCA or I6 antibody that was most 

closely related to the DH511 UCA. Antibody I2, with only 6.1% VH mutations, acquired the 

ability to neutralize 12 of 12 isolates (table S20). Analysis of a panel of MPER peptides did 

not reveal constructs that bound with measurable affinity to the UCA (fig. S4). Rather, 

DH511 lineage member binding to MPER antigens at detectable affinity was acquired after 

the I6 stage of maturation. Acquisition of breadth in the DH511 clone was associated with 

the accumulation of somatic mutations and binding affinity to the distal MPER peptide 
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epitope (fig. S4). However, in Luminex assay and ELISA, the DH511 UCA did react with 

U1 small nuclear RNP (U1-snRNP), and in protein microarray assay, the DH511 UCA was 

both polyreactive and autoreactive with a number of proteins (table S21). Analysis of four 

recombinant RNP subunit proteins demonstrated DH511 UCA reactivity with subunit A of 

RNP and no reaction with B/B′, C, or 68/70 kDa RNP subunits (fig. S5). Surface plasmon 

resonance analysis indicated the Kd of the DH511 UCA for RNP subunit A to be 0.84 µM 

(fig. S5). An amino acid alignment of HIV-1 Env gp41 and U1-snRNP A showed no regions 

of sequence similarity (fig. S6); structural comparison of U1-snRNP A and the MPER 

region bound by the DH511 lineage was not possible because only the N-terminal 

recognition motif domain of the U1-snRNP A crystal structure has been solved [Protein 

Data Bank (PDB): 3PGW] (29). The remainder of the DH511 lineage members had varying 

degrees of polyreactivity/autoreactivity, suggesting that similar to other MPER bnAb 

lineages, DH511-like lineages will be subject to immune tolerance control in the setting of 

vaccination (table S21) (4, 30, 31). Thus, one hypothesis is that the distal MPER bnAb 

DH511 clonal lineage UCA may have been initiated by self-antigens, and HIV-1 gp41 distal 

MPER antigens engaged later stages of the bnAb lineage after intermediate antibody I6 (32–

34).

Mechanism of distal MPER bnAb interaction with virions

The binding of gp41 bnAbs 2F5 and 4E10 to the gp41-lipid complex has been proposed as a 

sequential two-step process, in which encountering the lipid membrane first takes place to 

aid in docking of the antibody with the transiently exposed gp41 intermediate–neutralizing 

epitope during the virion-host cell fusion process (35–37). Both DH511.2 and 10E8 weakly 

bound to bare liposomes but bound to MPER peptide liposomes (35, 37) in a two-step 

conformational change model that involved linked interactions, in which the mAbs initially 

form an encounter complex with the lipid and solvent exposed residues followed by the 

formation of a stable complex with the complete MPER epitope (Fig. 5). Thus, the 

mechanism of binding of both DH511.2 and 10E8 to MPER peptide in the context of lipids 

was similar to each other and similar to the mechanism previously reported for proximal 

MPER bnAb 2F5 and the highly polyreactive distal MPER bnAb 4E10 (25, 31, 35, 36). The 

bnAbs 10E8 and DH511.2 also captured infectious virions and bound GCN4 gp41-inter, a 

construct that mimics the extended prehairpin intermediate conformation of gp41 (figs. S7 

and S8) (10, 38). Both early and late members of the DH511 lineage bound directly to 

GCN4 gp41-inter (fig. S8). Thus, the DH511 distal MPER bnAbs and the 10E8 bnAb bound 

both to the prefusion intermediate form of gp41 on infectious virions and to the gp41 

intermediate form that is present after receptor-mediated activation of Env (37–39).

To determine the impact of timing of the gp41 intermediate epitope exposure on HIV-1 

neutralization (40), we compared the window of time in which bnAbs DH511.2, 10E8, and 

4E10 could neutralize the tier 2 HIV-1 strain B.BG1168 after virus addition to TZM-bl cells. 

The half-life of neutralization for DH511.2 (t1/2 = 26.8 ± 2.3 min) was the same as that for 

bnAbs 10E8 (t1/2 = 25.6 ± 2.5 min) and 4E10 (t1/2 = 28.2 ± 3.5 min) and similar to the half-

life of fusion inhibition by the gp41 intermediate mimic T20 (t1/2 = 20.2 ± 0.5 min) (Fig. 6) 

(40). These results demonstrated that for neutralization, DH511.2 recognized a transiently 

exposed intermediate state of gp41 (38).
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DISCUSSION

Here, we report the isolation and structural, biochemical, and functional characterization of 

broad and potent HIV-1 gp41 bnAb DH511 clonal lineage from both memory B cells and 

plasma. The memory B cell repertoire contains multiple specificities of antibodies reflective 

of an individual’s immune history (41), whereas primary contributors to plasma antibodies 

are long- and short-lived plasma cells (18). There is indirect evidence that, at least for non–

HIV-1 antigens such as influenza (42) and West Nile virus (43), a fraction of the antibodies 

encoded by antigen-specific memory B cells may be present in the serum at physiologically 

relevant concentrations, that is, at concentrations comparable to the antigen/antibody 

dissociation constant (Kd) values. In this study, we demonstrated that class-switched 

memory B cells and plasma antibodies shared some of the clonal lineage members of a 

potent and broadly neutralizing distal MPER bnAb. The relationship of the HIV-1–specific 

memory B cell and plasma antibody pools is complicated by HIV-1 infection–mediated 

damage of B cells, with disruption of the germinal center in the earliest stages of infection 

(44), and the accumulation of Fc receptor–like 4–positive memory B cells in chronic 

infection (45). Here, we show that blood plasma can be a rich source for the identification of 

potent bnAbs for recombinant antibody production and for constructing chimeric antibodies 

for enhancing antibody potency and breadth.

Both proximal MPER (2F5) and distal MPER (4E10) antibodies bind in a two-step process 

to the gp41 intermediate conformation that is induced after CD4 receptor–mediated Env 

activation (35, 36), and the epitope on virion Env of both 2F5 and 4E10 also involves the 

virion membrane (36). Irimia et al. (46) have demonstrated lipid as an integral component of 

the 4E10 epitope by crystallography.

It was of interest that 10E8 and DH511 mAbs similarly bound to HIV-1 MPER in the 

context of lipids (Fig. 5), and unlike the proximal MPER antibody 2F5, the distal MPER 

bnAbs DH511, 4E10, and 10E8 also captured infectious virions (fig. S7). These data 

demonstrated that distal MPER-targeting bnAbs bind to lipid and to an epitope on the 

prefusion conformation of Env gp41 before CD4-induced Env activation, a notion recently 

suggested by a cryo–electron microscopy structure of a membrane-bound HIV-1 trimer (47).

A limitation of this study is the lack of longitudinal samples from donor CH0210, who was 

identified during chronic HIV-1 infection, thus precluding detailed analysis of the emergence 

and maturation of MPER-directed antibody lineages from the time of HIV-1 infection. Such 

information could delineate MPER antibody-virus coevolution events and inform vaccine 

design strategies for the induction of such bnAbs. Additionally, we note that LC-MS/MS 

proteomics may somewhat underestimate the clonal diversity of the plasma MPER–specific 

antibody repertoire.

Finally, both 2F5 and 4E10 MPER bnAbs have been found to be limited in their induction 

by immune tolerance mechanisms (4–7). In the case of the 2F5 bnAb against the proximal 

MPER bnAb epitope, reactivity to both a host protein (kynureninase) and to host lipids limit 

2F5-like antibody induction (31, 48). In primates, tolerance could be broken for the 

induction of 2F5 epitope antibodies that cross-react with kynureninase, but the induction of 
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lipid-reactive antibodies with hydrophobic HCDR3s remained strongly disfavored (31). 

Here, we found that the DH511 UCA and several other bnAb lineage members were 

polyreactive (table S21). We have previously shown HIV-1 antibody clonal lineage evolution 

from preexisting polyreactive antibody lineages selected by host or environmental antigens 

(32–34). The control of other proximal (2F5) and distal (4E10) MPER bnAb induction by 

central and peripheral tolerance mechanisms (4) suggests that the use of MPER immunogens 

that engage a preexisting antibody lineage induced by host antigens (32–34) in a vaccine 

formulation designed to transiently limit immune tolerance mechanisms (49) will be 

required for distal MPER bnAb induction.

MATERIALS AND METHODS

Study design

The purpose of this study was to isolate new distal MPER bnAbs and to study their 

ontogeny, breadth, and potency. Plasma samples from about 55 individuals with 

neutralization breadth (50) enrolled in the Center for HIV/AIDS Vaccine Immunology 

(CHAVI) 001 nonblinded, non-randomized, observational study protocol at CHAVI clinical 

sites in South Africa, Tanzania, and Malawi were assayed for Env antibody specificities after 

informed consent was obtained under protocols approved by the Institutional Review Board 

of the Duke University Health System, the National Institutes of Health (NIH), and review 

boards of the clinical sites in South Africa, Tanzania, and Malawi (51). Individuals were 

included in the study group who were known to be chronically infected with HIV-1 and were 

not elite viral controllers. All participants were antiretroviral naïve at the time of enrollment. 

The clade distribution and other characteristics of the cohort have been reported (49). South 

African individual CH0210, who was chronically infected with a clade C virus for an 

unknown period at the time of enrollment, was selected for bnAb isolation because of the 

presence of high levels of distal MPER bnAb neutralizing activity (12). CH0210 was only 

one of four such individuals identified with distal MPER bnAb specificity of the CHAVI 001 

individuals studied, and the one individual of the four from whom potent bnAbs could be 

isolated. The DH511 bnAb lineage was isolated from CH0210 PBMCs and plasma collected 

at 8 weeks after study enrollment, where the viral load was 5180 copies/ml and the CD4 T 

cell count was unknown.

Epitope mapping and neutralization-based epitope prediction analysis

CH0210 plasma was assayed for neutralization breadth using mapping and computational 

methods for epitope prediction (11, 52). Anti-MPER bnAb activity was detected using two 

assays: plasma neutralization of the HIV-2/HIV-1 MPER chimeric pseudovirus C1C and 

plasma adsorption with MPER peptide–coated magnetic beads, followed by testing of 

adsorbed plasmas for reduction of neutralization activity, as described previously (53). A 

neutralization fingerprinting method for mapping the epitopes targeted by polyclonal 

antibody responses (11, 52) was used to delineate the specificities mediating breadth against 

a panel of 21 diverse HIV-1 strains. The resulting linear coefficients on a scale of 0 to 1 from 

the computational procedure were used to predict the relative prevalence of each of the 

reference antibody specificities in donor CH0210 plasma.
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Antigen-specific single memory B cell sorting

Fluorescently labeled MPER peptide tetramer probes were generated using biotinylated 

MPR.03 peptide (KKKNEQELLELDKWASLWN-WFDITNWLWYIRKKK-biotin) (CPC 

Scientific Inc.) conjugated to fluorophore-labeled streptavidins, yielding a tetramer with four 

MPER epitopes for surface Ig cross-linking (13). PBMCs (11.5 million) from donor 

CH0210 were stained with MPR.03–Alexa Fluor 647 and MPR.03–Brilliant Violet 421 

peptide tetramers and a cocktail of antibodies to identify MPER-specific memory B cells: 

surface IgM [fluorescein isothiocyanate (FITC)], surface IgD [phycoerythrin (PE)], CD3 

(PE-Cy5), CD16 (Brilliant Violet 570), CD235a (PE-Cy5), CD19 [allophycocyanin (APC)–

Cy7] (BD Biosciences), CD14 (Brilliant Violet 605) (Invitrogen), CD27 (PE–Cy7), CD38 

(APC–Alexa Fluor 700) (Beckman Coulter), and CD10 (ECD) (Beckman Coulter). Aqua 

blue vital dye (Invitrogen) was used to stain dead cells. Using a four- laser FACSAria cell 

sorter and FACSDiva software (BD Biosciences), single cell–sorted MPR.03 double-positive 

CD16−CD14−CD3−CD235−CD19+IgD−/CD38all memory B cells were flow sorted into 

individual wells of a 96-well plate containing reverse transcription (RT) reaction buffer [5 µl 

of 5′ first-strand complementary DNA (cDNA) buffer, 0.5 µl of RNaseOUT (Invitrogen), 

1.25 µl of dithiothreitol (DTT), 0.0625 µl of IGEPAL CA-630 (Sigma), 13.25 µl of distilled 

H2O (Invitrogen)]. Data were analyzed using the FlowJo software (Tree Star). Plates were 

stored at −80°C until polymerase chain reaction (PCR) was performed.

PCR amplification and expression of Ig genes

Ig genes were amplified from RNA of isolated cells by RT-PCR. For RT, 10 mM dNTPs 

(New England Biolabs), 3 µl of random hexamers at 150 ng/ml (GeneLink), and 1 µl of 

SuperScript III (Invitrogen) were added to each well and subjected to thermocycling under 

the following conditions: 42°C for 10 min, 25°C for 10 min, 50°C for 60 min, and 94°C for 

5 min. IgH, Igκ, and Igλ variable region genes were separately amplified from the cDNA by 

nested PCR, using AmpliTaq Gold 360 Master Mix (Invitrogen) and heavy chain (54) and 

light chain gene-specific primers, as previously described (55). PCR amplicons were 

purified and sequenced, and VHDJH and VLJL genes, mutation frequencies, and CDR3 

lengths were determined using the Cloanalyst software (56). Clonal relatedness and 

inference of the UCA and intermediate antibodies were determined by computational 

methods as described previously (57–59). Maximum likelihood phylogenetic trees were 

constructed from V(D)J sequences using the Phylogeny Inference Package (PHYLIP) 

(version 3.69) (60). Transient small-scale expression of antibodies was achieved by 

overlapping PCR assembly of variable heavy and light chain gene pairs into IgH, Igκ, and 

Igλ linear expression cassettes for production of full-length IgG1 mAbs by transfection into 

293T cells, as described previously (55). Supernatants were screened for HIV-1 Env binding 

by ELISA and neutralization activity in TZM-bl cells. For large-scale antibody production, 

antibody variable heavy chain and light chain genes were de novo synthesized (GenScript), 

cloned into pcDNA3.1 expression vectors containing the constant regions of IgG1 (55), and 

cotransfected at equal ratios in Expi293i cells using ExpiFectamine 293 transfection 

reagents (Thermo Fisher Scientific) according to the manufacturer’s instructions. Culture 

supernatants were harvested and concentrated after 4 to 5 days of incubation at 37°C and 8% 

CO2, followed by affinity purification by protein A column (Pierce, Thermo Fisher 

Williams et al. Page 11

Sci Immunol. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scientific). Antibody purity was evaluated by SDS–polyacrylamide gel electrophoresis and 

Coomassie Blue staining for heavy and light chains of the appropriate size.

The recovered antibodies were named by assigning the lineage designation “DH511,” 

followed by a specific antibody number “x” (referred to as DH511.“x”), allowing 

assignment of unique identifier for each clonal lineage member. Antibodies isolated from 

donor CH0210 plasma (as described in the methods below) were designated DH511.x.“P,” 

with “P” indicating plasma origin.

High-throughput paired VH/VL sequencing of Ig transcripts and proteomic analysis of 
serum IgG

Materials and reagents—Protein G Plus agarose, NeutrAvidin agarose, immobilized 

pepsin resin, and HyperSep SpinTip C18 columns (C18 Spin Tips) were acquired from 

Pierce (Thermo Fisher Scientific). Tris-hydrochloride (tris-HCl), ammonium bicarbonate 

(NH4HCO3), 2,2,2-trifluoroethanol (TFE), DTT, and iodoacetamide (IAM) were obtained 

from Sigma-Aldrich. LC-MS–grade water, acetonitrile (ACN), and formic acid were 

purchased from EMD.

Isolation of total B cells: Frozen PBMCs (10 million cells in 1 ml) were thawed at 37°C; 

resuspended in 50 ml of RPMI 1640 (Lonza) supplemented with 10% fetal bovine serum, 1× 

nonessential amino acids, 1× sodium pyruvate, 1× glutamine, 1× penicillin/streptomycin, 

and deoxyribonuclease I (20 U/ml); and recovered via centrifugation (300g for 10 min at 

20°C). The cells were then resuspended in 4 ml of RPMI and allowed to recover at 37°C for 

30 min. The cells were diluted with 10 ml of cold MACS buffer [phosphate-buffered saline 

(PBS) supplemented with 0.5% bovine serum albumin and 2 mM EDTA], collected by 

centrifugation (300g for 10 min at 4°C), and depleted of non–B cells using the Human 

Memory B Cell Isolation Kit with an LD column (Miltenyi Biotec) as per the manufacturer’s 

instructions. This yielded 400,000 to 500,000 B cells per vial.

Amplification of the paired VH/VL repertoire—The paired VH and VL sequences were 

determined using a custom-designed axisymmetric flow–focusing device (22) that is 

composed of three concentric tubes. Total B cells were suspended in 6 ml of cold PBS and 

passed through the innermost tube at a rate of 0.5 ml/min. Oligo-d(T)25 magnetic beads (1 

µm in diameter at a concentration of 45 µl of beads per milliliter of solution; NEB) were 

washed, subjected to focused ultrasonication (Covaris) to dissociate any aggregates, 

resuspended in 6 ml of lysis buffer [100 mM tris-HCl (pH 7.5), 500 mM LiCl, 10 mM 

EDTA, 1% lithium dodecyl sulfate (LiDS), 5 mM DTT], and passed through the middle tube 

at a rate of 0.5 ml/min. The outer tubing contained an oil phase (mineral oil containing 4.5% 

Span-80, 0.4% Tween 80, and 0.05% Triton X-100; Sigma-Aldrich) flowing at 3 ml/min. 

The cells, beads, and lysis buffer were emulsified as they passed through a custom-designed 

120-µm-diameter orifice and were subsequently collected in 2-ml microcentrifuge tubes. 

Each tube was inverted several times, incubated at 20°C for 3 min, and then placed on ice. 

After the collection phase, emulsions were pooled into 50-ml conicals and centrifuged 

(4000g for 5 min at 4°C). The mineral oil (upper phase) was decanted, and the emulsions 

(bottom phase) were broken with water-saturated cold diethyl ether (Fisher). Magnetic beads 
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were recovered after a second centrifugation step (4000g for 5 min at 4°C) and resuspended 

in 1 ml of cold buffer 1 [100 mM tris (pH 7.5), 500 mM LiCl, 10 mM EDTA, 1% LiDS, 5 

mM DTT]. The beads were then serially pelleted using a magnetic rack and washed with the 

following buffers: 1 ml of lysis buffer, 1 ml of buffer 1, and 0.5 ml of buffer 2 [20 mM tris 

(pH 7.5), 50 mM KCl, 3 mM MgCl]. The beads were split into two aliquots, and each was 

then pelleted one final time and resuspended in an RT-PCR mixture (22) containing VH and 

VL framework region 1 (FR1) linkage primers or VH and VL leader peptide (LP) linkage 

primers (table S22, A and B). The RT-PCR mixtures were then added dropwise to 9 ml of 

chilled oil phase in an IKA dispersing tube (DT-20, VWR) and emulsified using an emulsion 

dispersing apparatus (ULTRA-TURRAX Tube Drive; IKA) for 5 min. The emulsions were 

aliquoted into 96-well PCR plates (100 µl per well) and subjected to RT-PCR under the 

following conditions: 30 min at 55°C followed by 2 min at 94°C; 4 cycles at 94°C for 30 s, 

50°C for 30 s, and 72°C for 2 min; 4 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 2 

min; 32 cycles at 94°C for 30 s, 60°C for 30 s, and 72°C for 2 min; and 7 min at 72°C; held 

at 4°C.

After RT-PCR, the emulsions were collected in 2-ml microcentrifuge tubes and centrifuged 

(16,000g for 10 min at 20°C). The mineral oil (upper phase) was decanted, and water-

saturated ether was used to break the emulsions. The aqueous phase (containing the DNA) 

was extracted three times by sequentially adding ether, centrifuging the samples (16,000g 
for 30 s at 20°C), and removing the upper ether phase. Trace amounts of ether were removed 

using SpeedVac for 30 min at 20°C. The DNA amplicons were purified using a silica spin 

column (Zymo-Spin I, Zymo Research), according to the manufacturer’s instructions, and 

eluted in 40 µl of H2O. The two samples were then amplified through a nested PCR (see 

table S22C for primers) using Platinum Taq (Life Technologies) under the following 

conditions: (FR1 primer–derived sample) 2 min at 94°C, 32 cycles of 94°C for 30 s, 62°C 

for 30 s, 72°C for 20 s; 72°C for 7 min; held at 4°C; (LP primer–derived sample) 2 min at 

94°C, 27 cycles of 94°C for 30 s, 62°C for 30 s, 72°C for 20 s; 72°C for 7 min; held at 4°C. 

The amplicons, about 850 bp in length, were gel-purified from 1% agarose using a gel 

extraction kit (Zymo Research), according to the manufacturer’s instructions, and eluted in 

20 µl of H2O.

To determine the full-length VH and VL reads for antibody expression studies, we subjected 

the paired amplicon to an additional PCR using NEBNext high-fidelity polymerase (NEB) to 

specifically amplify the full VH chain and the full VL chain separately in addition to the 

paired chains (note: the paired reads sequence the entire J and D regions and the fragment of 

the V regions spanning FR2 to CDR3). Each sample was split into five reactions and 

subjected to the following PCR conditions: 30 s at 98°C, X cycles of 98°C for 10 s, 62°C for 

30 s, 72°C for Y s; 72°C for 7 min; held at 4°C (see table S22D for the PCR conditions and 

table S22E for the primer sequences). Last, these sequences were amplified one final time 

with TruSeq barcode-compatible barcoding primers following the protocol shown in table 

S22F, gel- purified from 1% agarose using a gel purification kit according to the 

manufacturer’s instructions, and submitted for paired-end Illumina next-generation 

sequencing (NGS).
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Bioinformatic analysis of NGS data—Raw 2 × 300 MiSeq reads were quality-filtered 

(minimum Phred score of 20 over half of the nucleotide sequence) and submitted to MiXCR 

(61) for CDR3 identification and gene annotation. Productive VH and VL reads were paired 

by Illumina MiSeq ID using a custom python script. Full-length VH and VL reads were 

stitched together using FLASH (62) and then quality-filtered. Full-length VH and VL 

constructs were designed by matching the paired HCDR3/LCDR3 nucleotide sequences to 

the respective CDR3 in the full-length VH and VL libraries.

Sample preparation and LC-MS/MS analysis—Plasma IgG from donor 0210 was 

purified by Protein G Plus agarose affinity chromatography, and F(ab′)2 fragments were 

generated by digestion with immobilized pepsin. Antigen-specific F(ab′)2 was isolated by 

affinity chromatography with the biotinylated MPER peptide coupled to NeutrAvidin 

agarose and eluted in 100 mM glycine (pH 2.7). The collected fractions were neutralized, 

and the protein-containing fractions were pooled and prepared for LC-MS/MS, as described 

previously (19). Briefly, protein samples were concentrated and resuspended in 50% (v/v) 

TFE, 50 mM NH4HCO3, and 2.5 mM DTT and incubated at 55°C for 45 min. The reduced 

samples were then alkylated with IAM in the dark, at room temperature for 30 min. The 

reaction was quenched by addition of DTT, and the samples were diluted to 5% TFE and 

digested with trypsin (trypsin/protein ratio of 1:75 at 37°C for 5 hours). The digestion was 

stopped by adding formic acid to 1% (v/v). The samples were then concentrated by 

SpeedVac and resuspended in 5% ACN and 0.1% formic acid, and the peptides were washed 

on C18 Spin Tips according to the manufacturer’s protocol. Subsequently, the peptides were 

separated by reversed-phase chromatography (Dionex UltiMate 3000 RSLCnano System 

with Dionex Acclaim PepMap RSLC C18 column, Thermo Scientific) and analyzed online 

by nano–electrospray ionization–MS/MS on Orbitrap Velos Pro (Thermo Scientific). MS1 

scans were collected in the orbitrap at a resolution of 60,000 Å, and the ions with >+1 

charge were fragmented by collision-induced dissociation with up to 20 MS2 spectra 

collected per MS1.

Computational interpretation of peptide mass spectra—Full-length VH and VL 

sequencing data (see above) were submitted to the IMGT/HighV-QUEST tool (63) for 

annotation, and unique full-length VH sequences were clustered into clonotypes according to 

their HCDR3 sequences with a cutoff of 85% identity as described previously (64). The 

sample-specific target protein sequence database was constructed from the full-length VH 

and VL sequences mentioned above (≥2 reads), Ensembl human protein-coding sequences, 

and common contaminants (maxquant.org). The spectra were then searched against this 

database using SEQUEST (Proteome Discoverer 1.4, Thermo Scientific) with previously 

described settings (17). The resulting PSMs were filtered with Percolator (Proteome 

Discoverer 1.4) to control false discovery rates to <1%; the average mass deviation (AMD) 

was calculated for all high-confidence PSMs, and peptides with an AMD of <1.5 parts per 

million were kept for the final data set. Informative peptides, as defined previously (17), 

were grouped by their HCDR1, HCDR2, or HCDR3 association, and for each group, the 

abundances of the corresponding clonotypes were determined by the sum of the extracted 

ion chromatograms of the respective precursor ions.
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Enzyme-linked immunosorbent assays

Binding of transiently transfected supernatants and mAbs to HIV-1 Env proteins and 

peptides was detected by ELISA. High-binding 384-well plates (Corning) were coated 

overnight at 4°C or for 2 hours at room temperature with HIV-1 protein or streptavidin (2 

µg/ml) (for detection of binding to biotinylated peptides) in 0.1 M sodium bicarbonate 

(Sigma-Aldrich). U1 spliceosomal RNA U1-snRNP components A, B/B′, C, and 68/70 kDa 

(SurModics) were coated at 60 ng per well. Plates were blocked for 1 hour at room 

temperature with assay diluent composed of PBS, 4% (w/v) whey protein (BiPro USA), 

15% normal goat serum (Invitrogen), 0.5% Tween 20, and 0.05% sodium azide (Sigma-

Aldrich), followed by a 1-hour incubation with antibody at a starting concentration of 100 

µg/ml, serially diluted threefold. Horseradish peroxidase–conjugated goat anti-human IgG 

Fc antibody (Jackson ImmunoResearch Laboratories) was added to each well and incubated 

for 1 hour, after which plates were washed with PBS/0.1% Tween 20 and developed with 

SureBlue Reserve TMB One Component Microwell Peroxidase Substrate for 15 min (KPL). 

Development was stopped with 0.1 M HCl, and plates were read at 450 nm. Experiments 

were performed in duplicate, and results were reported as logarithm area under the curve 

(Log AUC). For epitope mapping, purified mAbs were screened as listed above against a 

panel of MPR.03 alanine-scanned peptides. Epitope positions were defined by MPR.03 

alanine scan mutations that reduced the Log AUC by >50% compared with the wild-type 

peptide.

Neutralization assays

Neutralization assays were performed using HIV-1 Env pseudoviruses to infect TZM-bl cells 

as previously described (65, 66). A four-parameter hill slope equation was used to fit 

neutralization curves by nonlinear regression and for determination of maximum percent 

inhibition values. Titers were calculated as IC50 and IC80 and reported as the concentration 

of antibody causing a 50 or 80% reduction in relative luminescence units compared with 

virus control wells. Mapping of the MPER residues critical for neutralization was performed 

using a panel of alanine-scanned COT6.15 Env pseudoviruses, as described previously (23, 

24).

Neutralization signature analysis

A computational approach was used to define neutralization signatures by analyzing Env 

sequences from viruses that were differentially sensitive to neutralization by DH511 lineage 

and 10E8 mAbs. Using a previously described maximum likelihood tree correction method 

(26, 27), we scanned amino acids at each position in a given Env to identify mutational 

patterns that correlated with susceptibility or resistance in a multiclade panel of 208 isolates 

or a panel of 200 early/acute clade C viruses. Sequences were aligned using Gene Cutter 

(www.hiv.lanl.gov) to identify signature sites, after which phylogenetic statistical correction 

methods were applied to account for founder effects that can lead to false-positive statistical 

associations (26). Associations were considered significant if P values were less than 0.05 

and q values (false discovery rate after correction for multiple comparisons) were less than 

0.2.
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Modeling interactions of Env position 671 with 10E8 and DH511.2

We used the gp41 MPER peptide 10E8 cocrystal structure PDB 4G6F (1) and the peptide-

DH511.2 cocrystal structure resolved in this work to model the interactions of Asn, Thr, and 

Ser at position 671 with 10E8 and DH511.2. Both the structures had Asn at 671, the most 

common amino acid at this position (671 is 72% N, 21% S, and 5.5% T in the global 

alignment at the HIV database). Using homology modeling, we modeled the presence of Thr 

and Ser at this position. We used the Mutagenesis tool in PyMOL, with default settings to 

generate these models, and used the top models for side chains in each case. For the 10E8 

cocrystal structure, we also used CPHmodels web server (67) to model Ser and Thr at 

position 671, which provided almost identical models as PyMOL [The PyMOL Molecular 
Graphics System, Version 1.8 (Schrodinger LLC, 2015)]. For understanding steric clashes, 

we analyzed the abovementioned structures and models in Visual Molecular Dynamics 

(VMD) (68) and used the default threshold of 1.4 Å around each heavy atom to render the 

protein surfaces.

Affinity and kinetics measurements of MPER peptide and MPER liposome binding

Surface plasmon resonance analysis of MPER peptide binding was performed on a Biacore 

S200 instrument (GE Healthcare) at 25°C, and data were analyzed using the BIAevaluation 

S200 software (BIAcore) as described previously (35). To determine the affinity, association, 

and dissociation rate constants of the DH511 clonal lineage to MPER, we coated 

biotinylated MPR.03 peptide on streptavidin sensors (SA sensor chip) at a density of 58 to 

60 response units. DH511 lineage Fabs were injected over flow cells at increasing 

concentrations at a flow rate of 50 µl/min, with 5-min association and 10-min dissociation 

steps. Curves were blank SA surface–subtracted. Rate constants for MPR.03 peptide binding 

were measured using the “heterogeneous ligand” model and apparent equilibrium Kd 

derived using the faster component of the association and dissociation rates. U1-snRNP 

binding was measured by flowing it over DH511_UCA mAb, which was captured on an 

anti-human IgFc immobilized surface as described previously (35, 69), and Kd values were 

derived from steady-state affinity or from rate constants measured using global fitting to the 

langmuir 1:1 model. Peptide-liposome conjugates were generated with either MPER656 or 

MPER656.1-GTH1 peptides using an extrusion method (35) and analyzed by biolayer 

interferometry measurements using Octet RED96 (Forte-Bio) and binding rate constant 

derived after curve-fitting to a two-step encounter docking model, as described previously 

(31, 35). Forte-Bio Aminopropylsilane (APS) sensors were used to capture MPER 

liposomes, and antibodies were used at concentrations ranging from 10 to 200 µg/ml (10E8 

and DH511.2) or from 5 to 80 µg/ml (4E10).

Polyreactivity/autoreactivity analysis

Antibody binding to a panel of nine autoantigens, including Sjögren’s syndrome antigen A 

(SSA), SSB, Smith antigen, RNP, scleroderma 70, Jo-1, double-stranded DNA, centromere 

B, and histone, was quantified by a Luminex-based AtheNA Multi-Lyte ANA assay (Zeus 

Scientific Inc.). Anti-cardiolipin reactivity was measured using a QUANTA Lite ACA IgG 

III ELISA kit (Nova Diagnostics) as per the manufacturer’s instructions, as previously 

described (70). Antibodies were assayed for reactivity to the human epithelial cell line 
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(HEp-2) by indirect immunofluorescence staining using the IFA ANA/Hep-2 Test System 

(Zeus Scientific) as per the manufacturer’s protocol. Antibodies were diluted to 50 and 25 

µg/ml and scored negative or positive (1+ to 4+) at each dilution. Antibodies were also 

screened for binding to a panel of >9400 human proteins using a ProtoArray microarray 

(Invitrogen), according to the manufacturer’s instructions and as described by Liu et al. (9). 

Briefly, the array was blocked and incubated on ice with HIV-1 antibody (2 µg/ml) or the 

isotype control antibody, human myeloma protein, 151K (Southern Biotech) for 90 min. 

Antibody binding was detected with anti-human IgG–Alexa 647 secondary antibody (1 

µg/ml) (Invitrogen). Arrays were scanned using a GenePix 4000B scanner (Molecular 

Devices) at a wavelength of 635 nm and resolution of 10 µm, using 100% power and 650 

gain. The fluorescence intensity of antibody binding was measured with the GenePix Pro 5.0 

program (Molecular Devices).

Infectious virion capture assay

The capacity of DH511 lineage antibodies to capture functional virions was assessed using a 

previously described protein G column– based assay (71, 72) that distinguishes between 

capture of infectious and noninfectious virions. Immune complexes, formed by mixing 

mAbs with virions expressing either B. TRO.11 or transmitted founder C.CAP206 Envs, 

were absorbed by a Protein G MultiTrap 96-well plate (GE Healthcare Inc.). Infectious 

virions were quantified in the flow-through fraction by a TZM-bl infectivity assay. Total 

virions in the flow-through and captured fractions were measured by detection of viral RNA 

by HIV gag real-time RT-PCR. The percent infectious virion capture was calculated using 

the following equation: [(100 - flow-through infectivity)/virus-only infectivity] × 100.

Time course of DH511.2 neutralization

The time course of DH511.2 neutralization was determined using a post-attachment HIV-1–

pseudotyped virus neutralization assay described previously (73). Inhibitory concentrations 

of DH511.2, 10E8, and 4E10 mAbs were added to TZM-bl cells incubated with B.BG1168 

virus at different time intervals after infection. Infectivity was measured in relative light 

units.

Crystallization, structure determination, and structural analysis

Purified DH511.4 fragment of antigen binding (Fab) was set up in crystallization trials in an 

unliganded state against commercially available screens (Hampton Research, Qiagen) as 

vapor diffusion sitting drops robotically (Douglas Instruments Ltd.). Crystals of DH511.4 

Fab (table S16) were obtained in a condition composed of 0.2 M disodium hydrogen 

phosphate and 20% PEG-3350 (polyethylene glycol, molecular weight 3350). These crystals 

were cryoprotected using mother liquor supplemented with ethylene glycol. Purified 

DH511.1, DH511.2, DH511.11P, DH511.12P, and DH511.2_K3 Fabs were set up in 

crystallization trials in complex with a panel of gp41 MPER peptides added at threefold or 

higher molar excess. For each complex, 576 initial conditions from commercially available 

screens (Hampton Research, Rigaku) were set up as vapor diffusion sitting drops robotically 

(TTP Labtech). Crystals of DH511.1 Fab in complex with gp41 MPER peptide residues 656 

to 683 were obtained in a condition composed of 30% PEG-1500, whereas those of 

DH511.2 Fab in complex with peptides MPR.03.DN4 and MPR.03.DN14 were obtained in 
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30% PEG-1500, 10% isopropanol, 0.1 M CaCl2, and 0.1 M imidazole (pH 6.5) and in 20% 

PEG-8000, 10% PEG-400, 0.5 M NaCl, and 0.1 M C2H3NaO2 (pH 5.5), respectively. 

Crystals of DH511.11P and DH511.12P Fabs in complex with the gp41 MPER peptide 

MPR.03.DN4 were obtained in a condition comprising 4% isopropanol, 3% PEG-3350, 0.75 

M NH4SO4, and 0.1 M C2H3NaO2 (pH 4.5). Crystals of DH511.2_K3 Fab in complex with 

the gp41 MPER peptide MPR.03.DN14 were obtained in a condition comprising 7% 

isopropanol, 20% PEG-3350, and 0.2 M ammonium citrate (pH 4.5). Crystal hits were hand-

optimized, and x-ray diffraction data were collected either without additional 

cryoprotectants or using mother liquor supplemented with 15% 2R,3R–butanediol. Data 

were processed with HKL-2000 (29). The unliganded DH511.4 Fab structure was solved by 

molecular replacement in Phaser (74) using, as search models, structures of antibody Fab 

fragments, which were matched by high sequence homology: the heavy chain of anti-HIV 

antibody 447-52D (PDB: 3GHB) (75) and the light chain of the human germline antibody 

5-51/012 (PDB: 4KMT) (76). The DH511.1, DH511.2, DH511.11P, DH511.12P, and 

DH511.2_K3 complex structures were solved by molecular replacement using the 

unliganded DH511.4 Fab (for DH511.1) and subsequent DH511 lineage structures as search 

models in Phaser (74). All structures were refined using Phenix (77), combined with 

iterative model building in Coot (78). Interactive surfaces and structural alignments were 

determined using Pisa (79) and LSQKAB (80), respectively. All graphical images were 

prepared with PyMOL (PyMOL Molecular Graphics System). X-ray diffraction data were 

collected at SER CAT ID-22 or BM-22 beamlines of the Advanced Photon Source 

(Argonne, IL), under General User Proposal 44127 (G.O.) and as a supporting institution 

(Duke University).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Isolation of MPER-directed bnAbs
(A) Fluorescently labeled MPR.03 peptide tetramers were used to decorate PBMCs from 

donor CH0210. A flow cytometric plot is shown. The square represents frequency of MPR.

03 double-positive MPER-specific memory B cells that were sorted for Ig gene 

amplification and expression. Colored dots within the square show individual cells that 

yielded MPER-specific mAbs DH511.1 to DH511.6 and DH517, as revealed by index 

sorting. Memory B cells were gated as live CD16−CD14−CD3−CD235−CD19+IgD−/

CD38all. (B) Phylogenetic tree of VHDHJH sequences of the DH511 clonal lineage. 

Ancestral reconstruction of the evolutionary pathway from the inferred UCA to the mature 
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mAbs including six maturational intermediates (I1 to I6, circles). DH511.13 could not be 

expressed and was not studied further. (C) Neutralization activity of probe-identified MPER 

antibodies against a panel of 208 cross-clade HIV-1 isolates. Median and geometric mean 

neutralization potency against viruses neutralized with an IC50/IC80 of <50 µg/ml. Right: 

The percentage of 208 viruses neutralized by mAbs DH511.2, 10E8, and VRC01 at IC50 or 

IC80 of <50 µg/ml, <1 µg/ml, and <0.1 µg/ml. (D) Neutralization potency and breadth of 

DH511.2 compared with 10E8 and VRC01 against a 208-isolate HIV-1 Env pseudovirus 

panel displayed as potency-breadth curves. The percentage of isolates neutralized at IC50 

(top) and IC80 (bottom) values is plotted against mAb concentration. (E) Percent maximum 

neutralization of each isolate by DH511.2. (F) Identification of MPER-directed broadly 

neutralizing plasma antibodies by proteomics. Phylogenetic tree of heavy chain sequences 

identified in the plasma and added to DH511.1 to DH511.6 isolated from the memory B cell 

compartment [see (B)]. The bar on the right shows the relative abundance of the three 

identified clonotypes in serum (IV, 95%; II, 4%; III, 1%).
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Fig. 2. Structural analysis of the DH511 lineage
(A) Crystal structures of DH511.1 and DH511.2 Fabs in complex with gp41 MPER peptides 

656 to 683 and 662 to 683, respectively, oriented on the basis of Cα atom superposition of 

distal MPER residues. MPER residues 668 to 683 are colored red. (B) Crystal structures of 

antibodies 10E8 (PDB: 4G6F) and 4E10 (PDB: 2FX7) in complex with MPER, oriented as 

in (A). Close-up view of DH511.1 and DH511.2 (C) and 10E8 (D) contacts with MPER 

residues 668 to 683. MPER residues that interact with antibody VH3–15 region residues, 

HCDR3 residues, or both are shown in cyan, red, or brown, respectively. (E) Directions of 

approach to distal gp41 MPER by antibodies DH511.1, DH511.2, 10E8, and 4E10. Shown 
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are superimposed structures of antibody-bound gp41 MPER, with lines representing 

antibody variable region directions of approach colored as in (A) and (B). (F) Crystal 

structures of Fabs of plasma-derived variants DH511.11P and DH511.12P in complex with 

gp41 MPER peptide 662 to 683, with residues 668 to 683 colored red. Antibody residues 

shown in surface representation differ in sequence from DH511.1 or DH511.2, with those at 

the interface with gp41 shown in red. (G) Close-up view of DH511.11P and DH511.12P 

contacts with MPER residues 668 to 683, colored as in (C). (H) Crystal structure of chimeric 

antibody DH511.2_K3 in complex with MPER peptide 670 to 683, with a close-up view 

shown in (I) and colored as in (C). (J) Close-up view of the LCDR3 loop of DH511.2.K3 

(magenta), rotated along the antibody longitudinal axis relative to (H) and superimposed 

with the complex structure of DH511.12P.
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Fig. 3. Comparison of paratopes of DH511 lineage antibodies with 10E8 MPER bnAb
(A) Surface representations of DH511 lineage antibodies and 10E8, rotated by 60° toward 

the reader, relative to the orientations in Fig.2. Antibody residues at positions within the 

heavy chain VH3–15 region that mediate contacts with gp41 in both the DH511 and 10E8 

lineages are shown in cyan. Remaining gp41-contacting residues within the VH3–15 region 

of the respective antibodies are shown in dark violet. HCDR3 residues that contact gp41 are 

shown in red. (B) Sequence alignment of DH511 lineage antibodies from memory B cells, 

plasma, and inferred intermediates, against antibody 10E8 and their shared VH3–15 

germline gene precursor. Residues that contact gp41 in the crystal structures are labeled with 

closed circles; somatically mutated residues are shaded. Conserved VH3–15 germline 

residues that interact with gp41 are shown in red.
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Fig. 4. Interactions of HIV-1 Env gp41 Asn and Thr at position 671 with distal MPER bnAbs 
10E8 and DH511.2
(A) 10E8 heavy chain (lavender) is shown in complex with gp41 MPER peptide (gray), with 

Asn (green, original amino acid in the structure) and Thr (red, modeled) at 671 shown in ball 

and stick representations. The 10E8 heavy chain volume within 4 Å of Asn671 is shown in 

yellow surface representation. Inset: Alignment of the modeled side chain for Thr with the 

Asn from the crystal structure, with various heavy atoms labeled. The crystal structure from 

PDB 4G6F (1) was used. (B) View of Asn (green opaque) and Thr671 (red opaque) surfaces 

from within the 10E8 heavy chain (HC) surface (lavender transparent). A part of the Thr671 

surface penetrates the 10E8 heavy chain clash volume. A cutoff of 1.4 Å around each heavy 
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atom was used to render the amino acid surfaces. (C) Same as in (A) with DH511.2 heavy 

chain shown in blue and with DH511.2 heavy chain volume within 4 Å of Asn671 shown in 

orange. gp41 peptide is aligned such that Env positions 673 to 685 have the same 

arrangement as in (A). The relative position of Thr compared with Asn was very similar, as 

shown in the inset of (A). (D) Same as in (B), with DH511.2 heavy chain volume shown as 

transparent blue. No part of the Thr671 amino acid surface penetrated the DH511.2 volume.
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Fig. 5. Comparison of DH511.2 binding to MPER peptide liposome conjugates to that of distal 
MPER bnAbs 4E10 and 10E8
(A) Both DH511.2 and 10E8 mAb binding to MPER liposomes followed a two-step 

“encounter-docking” model [A + B→ABx (encounter step); ABx→AB (docking step)] and 

was similar to the mode of binding of the MPER bnAb 4E10. The experimental data for 

each concentration of the indicated mAbs are shown in black, and the fitted curves derived 

from global curve fitting to the two-step conformational model are shown in red. Decreasing 

concentration dose of each mAb is as follows: DH511.2 = 1000, 666.7, 333.3, 166.7, and 

66.7 nM; 10E8 = 1333.3, 1000, 666.7, 333.3, 166.7, and 66.7 nM; 4E10 = 533.3, 266.7, 

66.7, and 33.3 nM; 13H11 = 2000, 1000, 666.7, 533.3, 333.3, 266.7, 133.3, and 66.7 nM. 
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The inset for each of the indicated MPER bnAbs shows the component curves for the 

encounter (Abx; green) and docked (AB; blue) complexes. The calculated rate constants for 

each binding step are shown in the table at the bottom. (B) Raw (control unsubtracted) 

binding of each mAb to bare (peptide-free) liposomes of the same lipid composition as the 

MPER liposomes. The control and non-neutralizing MPER 13H11 mAb show no binding to 

either MPER liposomes or bare (peptide-free) liposomes. MPER656 or MPER656.1 peptide 

was conjugated to synthetic liposomes for binding to 10E8 or DH511.2, respectively, and 

binding analysis was performed by biolayer interferometry analysis as described in the 

Materials and Methods. Data are representative of two independent experiments.
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Fig. 6. DH511.2 recognizes a transiently exposed intermediate state of gp41, and the lifetime of 
DH511.2 epitope exposure is the same as that of 10E8 and 4E10
Time course of neutralization of the tier 2 HIV-1 isolate B.BG1168 was measured by 

addition of mAbs to TZM-bl cells preincubated with virus. The mean t1/2 half-life of 

neutralization ± SD values were derived from four-parametric sigmoid curve fitting analysis 

using data from two or three independent experiments. Half-life values were similar among 

the three antibodies.
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