1,328 research outputs found
On the limited amplitude resolution of multipixel Geiger-mode APDs
The limited number of active pixels in a Geiger-mode Avalanche Photodiode
(G-APD) results not only in a non-linearity but also in an additional
fluctuation of its response. Both these effects are taken into account to
calculate the amplitude resolution of an ideal G-APD, which is shown to be
finite. As one of the consequences, the energy resolution of a scintillation
detector based on a G-APD is shown to be limited to some minimum value defined
by the number of pixels in the G-APD.Comment: 5 pages, 3 figure
Probing Small-Molecule Microarrays with Tagged Proteins in Cell Lysates
The technique of small-molecule microarray (SMM) screening is based on the ability of small molecules to bind to various soluble proteins. This type of interaction is easily detected by the presence of a fluorescence signal produced by labeled antibodies that specifically recognize a unique sequence (tag) present on the target protein. The fluorescent signal intensity values are determined based on signal-to-noise ratios (SNRs). SMM screening is a high-throughput, unbiased method that can rapidly identify novel direct ligands for various protein targets. This binding-based assay format is generally applicable to most proteins, but it is especially useful for protein targets that do not possess an enzymatic activity. SMMs enable screening a protein in a purified form or in the context of a cellular lysate, likely providing a more physiologically relevant screening environment.National Cancer Institute (U.S.) (CA160860
Coarse and uniform embeddings between Orlicz sequence spaces
We give an almost complete description of the coarse and uniform
embeddability between Orlicz sequence spaces. We show that the embeddability
between two Orlicz sequence spaces is in most cases determined only by the
values of their upper Matuszewska-Orlicz indices. On the other hand, we present
examples which show that sometimes the embeddability is not determined by the
values of these indices.Comment: 12 pages. This is the final version. To appear in Mediterr. J. Mat
Extreme sample censoring problems with multivariate data: Indirect censoring and the Farlie-Gumbel-Morgenstern distribution
Indirect censoring is defined as the effect on observed variables of censoring on unobserved variables. Methods of testing for indirect censoring are discussed, and exemplified, using a bivariate Farlie-Gumbel-Morgenstern distribution
A nonparametric urn-based approach to interacting failing systems with an application to credit risk modeling
In this paper we propose a new nonparametric approach to interacting failing
systems (FS), that is systems whose probability of failure is not negligible in
a fixed time horizon, a typical example being firms and financial bonds. The
main purpose when studying a FS is to calculate the probability of default and
the distribution of the number of failures that may occur during the
observation period. A model used to study a failing system is defined default
model. In particular, we present a general recursive model constructed by the
means of inter- acting urns. After introducing the theoretical model and its
properties we show a first application to credit risk modeling, showing how to
assess the idiosyncratic probability of default of an obligor and the joint
probability of failure of a set of obligors in a portfolio of risks, that are
divided into reliability classes
Low field vortex matter in YBCO: an atomic beam magnetic resonance study
We report measurements of the low field structure of the magnetic vortex
lattice in an untwinned YBCO single-crystal platelet. Measurements were carried
out using a novel atomic beam magnetic resonance (ABMR) technique. For a 10.7 G
field applied parallel to the c-axis of the sample, we find a triangular
lattice with orientational order extending across the entire sample. We find
the triangular lattice to be weakly distorted by the a-b anisotropy of the
material and measure a distortion factor, f = 1.16. Model-experiment
comparisons determine a penetration depth, lambda_ab = 140 (+-20) nm. The paper
includes the first detailed description of the ABMR technique. We discuss both
technical details of the experiment and the modeling used to interpret the
measurements.Comment: 44 pages, 13 figures, submitted to Phys. Rev. B Revision includes
Postscript wrapped figures + minor typo
On an Asymptotic Series of Ramanujan
An asymptotic series in Ramanujan's second notebook (Entry 10, Chapter 3) is
concerned with the behavior of the expected value of for large
where is a Poisson random variable with mean and
is a function satisfying certain growth conditions. We generalize this by
studying the asymptotics of the expected value of when the
distribution of belongs to a suitable family indexed by a convolution
parameter. Examples include the problem of inverse moments for distribution
families such as the binomial or the negative binomial.Comment: To appear, Ramanujan
Clan Structure Analysis and Rapidity Gap Probability
Clan structure analysis in rapidity intervals is generalized from negative
binomial multiplicity distribution to the wide class of compound Poisson
distributions. The link of generalized clan structure analysis with correlation
functions is also established. These theoretical results are then applied to
minimum bias events and evidentiate new interesting features, which can be
inspiring and useful in order to discuss data on rapidity gap probability at
TEVATRON and HERA.Comment: (14 pages in Plain TeX plus 5 Postscript Figures, all compressed via
uufiles) DFTT 28/9
Possibility of an ultra-precise optical clock using the transition in Yb atoms held in an optical lattice
We report calculations designed to assess the ultimate precision of an atomic
clock based on the 578 nm transition in Yb atoms
confined in an optical lattice trap. We find that this transition has a natural
linewidth less than 10 mHz in the odd Yb isotopes, caused by hyperfine
coupling. The shift in this transition due to the trapping light acting through
the lowest order AC polarizability is found to become zero at the magic trap
wavelength of about 752 nm. The effects of Rayleigh scattering, higher-order
polarizabilities, vector polarizability, and hyperfine induced electronic
magnetic moments can all be held below a mHz (about a part in 10^{18}), except
in the case of the hyperpolarizability larger shifts due to nearly resonant
terms cannot be ruled out without an accurate measurement of the magic
wavelength.Comment: 4 pages, 1 figur
- …
