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Multivariate Data: Indirect Censoring and the 
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Indirect censoring is defined as the effect on observed variables of censoring on 
unobserved variables. Methods of testing for indirect censoring are discussed, and 
exemplified, using a bivariate FarlkGumbel-Morgenstern distribution. 

1. INTRODUCTION 

Johnson (41 has given a survey of various problems which can arise in 
testing for censoring of extreme values from univariate data. When data are 
multivariate, there is a much richer variety of possible problems; some 
possibilities are described in Johnson [3,5]. The present paper discusses the 
detection of indirect censoring, and investigates lines of attack for Farlie- 
Gumbel-Morgenstern bivariate distributions. 

We suppose that observed values on m characters X, ,X2,..., X, are 
available for each of r individuals. We wish to investigate whether these 
represent a complete random sample, or are the remainder of such a sample 
(original size n > r) after some form of censoring of extreme values has been 
applied. 

As in Johnson [4], we will restrict attention to random sampling from 
large populations in which the joint distribution of X, ,..., X,,, is absolutely 
continuous, with joint probability density function (PDF) 
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We will denote the (unordered) observations on the ith available individual 
by 

X” = (XT,,..., X$) (i = l,..., r). 

We also use the notation: 

(i) Pr[ ny!, (X$ < xi)] = F,, m(~l ,..., x,) (in particular 
Pr [X$ < x] = Ti(x)), 

(ii) for the conditional PDF of Xz, ,..., x3 given @I ,..., x;f, 
g,, .as:b,. .b,(xo, 7.-Y x@ 1 xb, ?.-? xb,) (in particular 

g,,(x, I x*), gu(x2 I Xl>>, (2) 
and 

(iii) for the order statistics corresponding to X$ ,..., X; 

We also will focus on the forms of censoring accorded special attention in 
Johnson [4] : 

(i) from above (exclusion of s, greatest values) or below (exclusion of 
s0 least values), 

and 

(ii) symmetrical (exclusion of equal number of greatest and least 
values (s, = s,)). 

We denote the hypothesis that the s, least and s, greatest values of an 
original complete random sample of size n (=r + s0 + s,) have been excluded 
by H,,,,,, so that 

(i) corresponds to H,,$, or H,,,, (so, s, > 0), 

(ii) corresponds to H,,, (s > 0). 

To indicate that the censoring is applied to the variable Xj we use the symbol 
Hli,!s,* 

2. INDIRECT CENSORING 

Suppose that there may be censoring on values of one variable-x,, 
say-but values of this variables are not observed. How should the 
(observed) values of (Xzi ,..., Xmi) (i = l,..., r) be used to detect if there has 
been censoring on X,? For simplicity, we consider the bivariate case 
(m = 2), but extension of the theory to general m is straightforward. We first 
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derive a likelihood ratio test. As we shall see, there appear to be considerable 
technical difficulties in applying this test in many natural situations. 
Therefore, we also suggest some other procedures which may sometimes be 
applied more easily. 

The available data consist of the -r observed values of X,, denoted by 
x;, ,***1 XT,.. Their joint PDF, if H,i:$ is valid, is 

where 1~ min(x, r ,..., x,,); u 3 max(x,, ,..., xlr). 
Since 

.fl(xli> g21tx2i I xii) =fi2(xli~ x2i) =.f2(x2i) gl*txli I x*i) 

we also have 

x Jj g*2txli I xZi) dxll ... dx,, . (3’) 
i=l 

In particular 

It follows that the likelihood ratio is 

X fi g,z(x,i I xTi> dx* 1 ... dx,, 
i=l 

= “;;:,y ~[v,(x;,)JSo{l -~,(X’,,)\S’l x:1, (4) 
0’ r- 

where Xi, <X’,, < ... <Xi,, are the order statistics of r independent random 
variables with densities g,,(x, 1 Gj) (j = l,..., r). (Note that X’,, ,..., X’,, do 
not, in general, have the same joint distribution (given Xq) as X,, ,..., Xl,., 
unless so = s, = 0.) 

683/10/3-h 
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Calculation of L from the observed values XT is usually quite difficult. 
When this is done, determination of the distribution of L (even when the null 
hypothesis, Hit:, is valid) is likely to be even more difficult. In Section 3 we 
use a Farlie-Gumbel-Morgenstern (FGM) (see, e.g., Johnson and Kotz [7]) 
joint distribution for illustrative purposes. Calculation of L is not very 
difficult in this special case, but even here, the distribution of L is not easily 
derived. The conditional joint distribution of X;, and X’,, can be derived 
from 

but this expression is usually quite complicated. 
We note that the value of L (and so its distribution) is unchanged by any 

monotonic increasing transformations of X: and Xf. This means that we can 
take, without loss of generality, each of the variables to have a standard 
uniform distribution (fi(x) = 1 for 0 < x < 1, i = 1,2). However, the joint 
PDF would then have to be that resulting from application of the 
appropriate transformations to the original joint PDF. The bivariate FGM 
distribution discussed in Section 3 does have standard uniform marginal 
distributions. 

A simpler criterion, suggested by the above analysis, is 

L, = {F,(mjn E(X, 1 Xfi]))““( 1 - I;,(max E(Xi ( X;l;.])}“* 

If E[X, 1 X,] is a monotonic increasing function of X, then 

(6) 

L, = (F,(E[X, 1 min(XT, ,..., X,*,)]))“~{ 1 - F,@[X, Imax(Xz*l ,..., X,*,)])}‘r. (7) 

If E[X, 1 X2] is a monotonic decreasing function of X,, then “min” and 
“max” in (7) are interchanged. 

Another related criterion, generally more difficult to compute, is 

L: = ~H~,(x,,,,NSol 1 - ~,wl,“,)~srl~ (8) 

where Xf(,, , XTtu, are independent with PDF’s g,,(x, ] X$,,), g,*(x, ( X&,i), 
respectively, and i = (1), (u) respectively minimize and maximize E[X, ] e[] 
with respect to i. 

If E[X, ] X,] is a monotonic increasing (decreasing) function of X,, then 

X,*(,, = min(max)(X,*, ,..., @,), 

xz*c., = max(min)(z, ,..., X$.). 
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3. DETECTION OF INDIRECT CENSORING IN FARLIE~UMBEL- 

MORGENSTERN (FGM) DISTRIBUTIONS 

3.1. Relevant Properties of FGM Distributions 

We consider the bivariate FGM joint distribution 

Pr[(X~<x,)~(X,*~x,)]=x,x,{l+8(1-x,)(1-x,)} 

(O<Xj< l;j= 1,2; (8( < 1). (9) 

Each X7 has a marginal standard uniform distribution (Fj(xj) = x,~ 
(0 < xi < 1)). This distribution has been chosen for analytical convenience. It 
is not claimed that the results will apply for other joint distributions, even 
after transformation to make the marginals be standard uniform. However, 
there are some speculative analogies which might be drawn. 

From (9) it follows that the joint PDF is 

./-(x1, x*) = 1 + e(l - 2x,)(1 - 2x,) (O<Xj< l;j= 1,2) (10) 

and the conditional PDF’s are 

g,*(x, 1 x2) = 1 + 8(1 - 2x,) . (1 - 2x,) (O<x, < 119 

g,,(x, J x,) = 1 + 8(1 -2x,) . (1 -2x,) (O<x,,< 1). 
(11) 

Hence 

Pr[l< * & u ] x2] = (u - I)[ 1 + B(1 - 2x,)(1 - 24 - r)] (O<l<u< 1) 

and 

Pr[l~X;,~X;,~uIx:]=(u-I)’ fl [l +0(1-2x$)(1 -u-r)]. 
j=l 

3.2. Derivation of L 

The conditional joint PDF of X;, and X;, is therefore 

-a*Pr[l~X’,,~X;,~uIxTz,] 
a1 au 

=r(r- 1)(u-l)r-2 fi (1 +0&(1-U-I)) 
i=l 

- 2o*(U - l)“CC ZFfZfjt ,yj, {l + ezfh(l - I4 - ‘I}, (12) 
id’ 

where z$ = 1 - 2x5. 



356 N. L. JOHNSON 

From (4), 

= tr + so + 0 
r! so! s,! r(r- 1) i: J(r-2,s,,s,;h)BhY, 

h=O 

-2a* i: J(r,so,sr;h) 
h=O 

(“‘I’) ehyh+2/T (13) 

where Y, = 1; Yh = C ... s,<. <jhnfE, Z$,; Z$ = 1 - 2X$ (h,j= l,..., r) 
and (with /$ y, 6, E positive integers) 

J(p, y, 6; E) = 1’ 1’ (u - Q4 I”( 1 - u)“( 1 - u - I)’ dl du 
0 0 

(14) 
= i (-1)’ 

& 

i=O 0 

/3! (y + i)! (8 + E - i)! /?! y! d! 
i @+y+6+~+2)! =(p+y+8+~+2)! 

G(yt 6; E), 

where 

G(y, 6; E) = f’ (-1)’ 
,= 

(y + l)“‘(S + 1y-i’ 

and aIbl = a(a + 1) . (a + b - 1) is the bth ascending factorial of a. 
Formula (13) can be written 

with 

L = f K(r, So, S,; h)ehYh 
h%o 

(16) 

qr, so, sr; h) = (G(s,, s,; h) - h(h - 1) G(s,, s,; h - 2) I/(‘. + So + Sr + 1 )Ih’. 

(17) 

(If E < o, G(s,, s,.; E) can be defined arbitrarily.) 
We note that 

K(r,so, s,; 0) = G(s,, s,; 0) = 1. 
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For censoring from below (s, = 0) 

(r + so + I)‘“’ K(r, so, 0; h) = (-l)*sbhl 

and for censoring from above (s, = 0) 

(r + s, + l)rhl K(r, 0, s,; h) = slhl. 

For s,,, s, > 1 we have the simple formula 

(r + so + s, + l)rhl K(r, so, s,; h) = G(so - 1, s, - 1; h). 

(19) 

(20) 

(21) 

This can be established by noting that G(s,, s,; h) = h! x (coefficient of x” in 
expansion of (1 + ~)-~“-‘(l - x)-“-I), as also can the formula for 
symmetrical censoring, 

(r + 2s + l)lhl K(r, s, s; h) = 0 if h is odd 

= (k + l)[klSlk’ if h = 2k. 
(22) 

Summarizing, we have the following expressions for the likelihood ratios: 

For detecting censoring from below: 

Ihl 

L=l + i (-ly(r+;+ l)‘,,, shy,. 
h=l 

For detecting censoring from above: 

+“I 

For detecting symmetrical censoring: 

L=l+ 2 
(k + l)‘klslkl #ky 

kGr,2 (r+ 2s t l)lzkl 2k’ 

(23) 

(24) 

(25) 

In each case large values of the statistic are to be regarded as significant 
of censoring of the relevant type. Some numerical values for calculating the 
coefficients of shy, in (23)-(25) are shown in Table I. 

3.3. Moments of L 

From the general theory of testing hypotheses, we have 

E[L ) Hg] = 1. (26) 
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TABLE I 

Values of (r t s, + s, + I)ihi K(r. s,,, s,; h) 

h 

so s, I 2 3 4 5 6 

0 1 1 2 6 24 120 720 
0 2 2 6 24 120 720 5040 
1 1 0 2 0 24 0 720 
0 3 3 12 60 360 2520 20160 
I 2 I 4 12 72 360 2880 
0 4 4 20 120 840 6720 60480 
I 3 2 8 36 216 1440 11520 
2 2 0 4 0 72 0 2880 

Nore. (i) To obtain the coefficient of S”Y,, in the formula for L (see (16)) these numbers 
must be divided by (r + s0 + S, + I)‘h’. Thus for r = 5, sg = 1, sJ = 2 we have 

= 1 +O.lllt9Y, +0.04446’*Y,+0.0121t9’Y,+0.0060684Y, +O.O02338’Y,. 

(ii) Values of s,, and s, can be interchanged by multiplying entries by (-l)h. 

Under H$, the 2:‘s are mutually independent and each is distributed 
uniformly over the interval (-1, 1) so, for all 9, 

E[(Zf)P 1 H$] = 0 if q is odd 

=(qt 1)-’ if q is even. 
(27) 

If follows that for any h, h’ (#h) 

and 

EIY,l 

var(Y, 

(28) 

Hence when using the statistics (23), (24) testing for censoring from below 
or above (s, = S, s, = 0 or s0 = 0, s, = s) 

=w I fG3 = h$l I sth’ /‘(;)(f 8jh, (29) (r + s + l)[hh’ 
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while when testing for symmetrical censoring (so = s, = s) 

(30) 

Approximate significance limits for L may be obtained by supposing the 
distribution under Hi:; to be approximately normal. 

3.4. Alternative Tests 

Since 

WT ]ZT]=E[1-2Z 1 z:] = J-’ (1 - 2x,){ 1 + ezT(1 - 2x,)} dr, 
0 (31) 

= fez; 

it follows that 

E[fl(z]=f[l-@(l-2z)] 
(32) 

= : - ;e( 1 - 2E). 

Hence, the simplified test statistic L, , defined in (6), is, for our FGM 
distribution and with 6’ > 0, 

L, = {: + i8(2X2, - l)}SO{$ - i(2X2, - l)}s’. (33) 

We note that if s&r,) = 0 (and 8 > 0), the critical region becomes simply 
X2, < (X2, >)K, with an appropriate value for the constant K. This would, 
of course, be the appropriate likelihood ratio test of the null hypothesis, with 
the alternative that X2 itself has been subjected to censoring from above 
(below). 

In the case of symmetric censoring (so = s, = s), the critical region (for all 
s > 0) is of the form 

{~+~8(2X,,-l)}I:-:e(2X,,-l)}>K (34) 

or equivalently 

;e2x2,(i -x2,) + :e(f - :e)(x,, + i -x2,) > K’. (34)’ 

This can be compared with the critical regions 

X2,(1 -X2,) (for symmetrical censoring), 

x2, + (1 -X2,) (for general censoring-see Johnson and Kotz [6]) 

for likelihood ratio tests of Hiti. 



360 N. L. JOHNSON 

The values in Table I suggest that useful tests might be constructed by 
taking as test statistics the first terms only in the summations in (23~(25). 
This would lead to critical regions (which do not depend on 19). 

For censoring from below: Y, < C. (35) 

For censoring from above: Y, > C. (36) 

For symmetrical censoring: Yz > C. (37) 

Since Y, = C;=, Z$ = CT=, (1 - 2X:), (35) and (36) are equivalent to 

(35)’ 

T x: < C’, 
.,?I 

(36)’ 

respectively. (The signs of the inequalities would be reversed if r3 < 0.) 
On the null hypothesis Z$fA (no censoring) the Xtj’s are mutually 

independent standard uniform variables. Therefore, even for r as small as 5, 
the distribution of their sum is closely approximated by a normal distribution 
with expected value ir and variance -&r (e.g., Johnson and Kotz [6, p. 641). 
So we obtain an approximate significance level a by taking 

112 
in (35)‘, 

112 
in (36)‘, 

where @(A,) = 1 - 01. 
From (A20) 

var(Y, ) Hi’:) = (1/18)r(r - 1). (38) 

Assuming Y, has an approximately normal distribution under Hi!;, we 
obtain an approximate significance level a for the test for symmetrical 
censoring (37) by taking 

r(r - 1) “2 C=A, --g- . ( ) 
The moments of the Y,,‘s under H$: may be evaluated by the following 

steps: 
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(i) find the conditional expected value, given Xr, and 

(ii) find the expected value of (i) when the joint distribution of the 
XT’S is that of the ($, + l)th, (sb + 2)th,..., (sb + r)th order statistics among 
(r + sb + s;) variables, each with PDF f,(x). 

Technical details are given in [5]. The results can be expressed in terms of 
quantities 

(Tp(r, sb. $)=)T, = ‘I;;, 1 y ;f E [ fj Gi I %?s;] c 

= 5 (-2)“((r+$)+$+ l)‘“‘}-’ y1 i 
u=o hl ... hp 

p-u+1 

x c ..’ ~ ~ (s;,+hi=+a-l). (40) 
il<.-<iu 0=1 

After some rather heavy algebra we obtain (using au’) = a(a - 1) . . 
(a - b + 1) to denote the bth descending factorial of a): 

T, = 

T2 = 
p 

2.(r+s;,+s;+l) 
,*I I (s: - sb)’ + sb + s:j, 

T3 = 
$3) 

6.(r+s;+s;+ 1) [3] lb: - GN(s: - a* + 3(G + s:> + 21, 

T4 = 
#4) 

24. (r+sb+s;+ I) 
,4, I@: - s&J4 + 6(s: - s;)‘(s; + s:) 

+ 1 l(s’, - s;)* + 6(s; + s;)}. 

These values suggest the conjectural formula 

P-l 

Tp = T(P) 
P! (r + Sb + SL + I)“’ 

(41) 
j=O 

where 

S(i) = 1 if i is even 

=o if i is odd 

and ] S,- ,,,I is the coefficient of & in the expansion of urp-rl (Stirling 
number of the first kind). 
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and as special cases 

Also 

WY2 I Hi&) 
=-r+ r{(r-l)(r+sb+s:+ l)-(2r+sb+s:+ l)(sb--s:)*} 1 

3 9(r+sb+s:+ l)‘(r+sb+s:+ 1) 

Further useful formulae include 

(42) 

(43) 

(44) 

(45) 

(46) 
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