9 research outputs found

    Phonon Thermodynamics versus Electron-Phonon Models

    Full text link
    Applying the path integral formalism we study the equilibrium thermodynamics of the phonon field both in the Holstein and in the Su-Schrieffer-Heeger models. The anharmonic cumulant series, dependent on the peculiar source currents of the {\it e-ph} models, have been computed versus temperature in the case of a low energy oscillator. The cutoff in the series expansion has been determined, in the low TT limit, using the constraint of the third law of thermodynamics. In the Holstein model, the free energy derivatives do not show any contribution ascribable to {\it e-ph} anharmonic effect. We find signatures of large {\it e-ph} anharmonicities in the Su-Schrieffer-Heeger model mainly visible in the temperature dependent peak displayed by the phonon heat capacity

    Calculation of excited polaron states in the Holstein model

    Full text link
    An exact diagonalization technique is used to investigate the low-lying excited polaron states in the Holstein model for the infinite one-dimensional lattice. For moderate values of the adiabatic ratio, a new and comprehensive picture, involving three excited (coherent) polaron bands below the phonon threshold, is obtained. The coherent contribution of the excited states to both the single-electron spectral density and the optical conductivity is evaluated and, due to the invariance of the Hamiltonian under the space inversion, the two are shown to contain complementary information about the single-electron system at zero temperature. The chosen method reveals the connection between the excited bands and the renormalized local phonon excitations of the adiabatic theory, as well as the regime of parameters for which the electron self-energy has notable non-local contributions. Finally, it is shown that the hybridization of two polaron states allows a simple description of the ground and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl

    Dynamical properties of discrete breathers in curved chains with first and second neighbor interaction

    Get PDF
    We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them in the chains and investigate properties of their propagation dynamics. We find that breather motion is strongly affected by the presence of curved regions of polymers, while the breathers themselves show a very strong resilience and remarkable stability in the presence of geometrical changes. For chains with strong angular rigidity we find that breathers either pass through bent regions or get reflected while retaining their frequency. Their motion is practically lossless and seems to be determined through local energy conservation. For less rigid chains modeled via second neighbor interactions, we find similarly that chain geometry typically does not destroy the localized breather states but, contrary to the angularly rigid chains, it induces some small but constant energy loss. Furthermore, we find that a curved segment acts as an active gate reflecting or refracting the incident breather and transforming its velocity to a value that depends on the discrete breathers frequency. We analyze the physical reasoning behind these seemingly general breather properties

    Multi-scale simulation method for electroosmotic flows

    No full text
    Electroosmotic transport in micro-and nano- channels has important applications in biological and engineering systems but is difficult to model because nanoscale structure near surfaces impacts flow throughout the channel. We develop an efficient multi-scale simulation method that treats near-wall and bulk subdomains with different physical descriptions and couples them through a finite overlap region. Molecular dynamics is used in the near-wall subdomain where the ion density is inconsistent with continuum models and the discrete structure of solvent molecules is important. In the bulk region the solvent is treated as a continuum fluid described by the incompressible Navier-Stokes equations with thermal fluctuations. A discrete description of ions is retained because of the low density of ions and the long range of electrostatic interactions. A stochastic Euler-Lagrangian method is used to simulate the dynamics of these ions in the implicit continuum solvent. The overlap region allows free exchange of solvent and ions between the two subdomains. The hybrid approach is validated against full molecular dynamics simulations for different geometries and types of flows
    corecore