270 research outputs found

    Approximative treatment of 5f-systems with partial localization due to intra-atomic correlations

    Get PDF
    Increasing experimental and theoretical evidence points towards a dual nature of the 5ff electrons in actinide-based strongly correlated metallic compounds, with some 5ff electrons being localized and others delocalized. In a recent paper (PRB xxx, 2004), we suggested the interplay of intra-atomic correlations as described by Hund's rules and a weakly anisotropic hopping (hybridization) as a possible mechanism. The purpose of the present work is to provide a first step towards a microscopic description of partial localization in solids by analyzing how well various approximation schemes perform when applied to small clusters. It is found that many aspects of partial localization are described appropriately both by a variational wavefunction of Gutzwiller type and by a treatment which keeps only those interactions which are present in LDA+U calculations. In contrast, the energies and phase diagram calculated within the Hartree Fock approximation show little resemblence with the exact results. Enhancement of hopping anisotropy by Hund's rule correlations are found in all approximations.Comment: 9 pages, 9 figure

    Optical Properties of Heavy Fermion Systems with SDW Order

    Full text link
    The dynamical conductivity σ(ω)\sigma (\omega), reflectivity R(ω)R(\omega), and tunneling density of states N(ω)N(\omega) of strongly correlated systems (like heavy fermions) with a spin-density wave (SDW) magnetic order are studied as a function of impurity scattering rate and temperature. The theory is generalized to include strong coupling effects in the SDW order. The results are discussed in the light of optical experiments on heavy-fermion SDW materials. With some modifications the proposed theory is applicable also to heavy fermions with localized antiferromagnetic (LAF) order.Comment: 9 pages, 10 figure

    Efficient Selfconsistent Calculations of Multiband Superconductivity in UPd2_2Al3_3

    Full text link
    An efficient physically motivated computational approach to multiband superconductivity is introduced and applied to the study of the gap symmetry in a heavy-fermion, UPd2_2Al3_3. Using realistic pairing potentials and accurate energy bands that are computed within density functional theory, self-consistent calculations demonstrate that the only accessible superconducting gap with nodes exhibits d-wave symmetry in the A1gA_{1g} representation of the D6hD_{6h} point group. Our results suggest that in a superconductor with gap nodes the prevailing gap symmetry is dictated by the constraint that nodes must be as far as possible from high-density areas

    Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3

    Full text link
    The optical properties of the heavy-fermion compound UPd2_2Al3_3 have been measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm1^{-1}) at temperatures 2K<T<3002 {\rm K}<T< 300 K. Below the coherence temperature T50T^*\approx 50 K, the hybridization gap opens around 10 meV. As the temperature decreases further (T20T\leq 20 K), a well pronounced pseudogap of approximately 0.2 meV develops in the optical response; we relate this to the antiferromagnetic ordering which occurs below TN14T_N\approx 14 K. The frequency dependent mass and scattering rate give evidence that the enhancement of the effective mass mainly occurs below the energy which is associated to the magnetic correlations between the itinerant and localized 5f electrons. In addition to this correlation gap, we observe a narrow zero-frequency conductivity peak which at 2 K is less than 0.1 meV wide, and which contains only a fraction of the delocalized carriers. The analysis of the spectral weight infers a loss of kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure

    Magnetic structure of CeRhIn_5 as a function of pressure and temperature

    Full text link
    We report magnetic neutron-diffraction and electrical resistivity studies on single crystals of the heavy-fermion antiferromagnet CeRhIn5_{5} at pressures up to 2.3 GPa. These experiments show that the staggered moment of Ce and the incommensurate magnetic structure change weakly with applied pressure up to 1.63 GPa, where resistivity, specific heat and NQR measurements confirm the presence of bulk superconductivity. This work places new constraints on an interpretation of the relationship between antiferromagnetism and unconventional superconductivity in CeRhIn5_{5}.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Particle density fluctuations

    Full text link
    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.Comment: Talk presented at Quark Matter 2002, Nantes, Franc

    Orbital-selective Mott transitions: Heavy fermions and beyond

    Full text link
    Quantum phase transitions in metals are often accompanied by violations of Fermi liquid behavior in the quantum critical regime. Particularly fascinating are transitions beyond the Landau-Ginzburg-Wilson concept of a local order parameter. The breakdown of the Kondo effect in heavy-fermion metals constitutes a prime example of such a transition. Here, the strongly correlated f electrons become localized and disappear from the Fermi surface, implying that the transition is equivalent to an orbital-selective Mott transition, as has been discussed for multi-band transition-metal oxides. In this article, available theoretical descriptions for orbital-selective Mott transitions will be reviewed, with an emphasis on conceptual aspects like the distinction between different low-temperature phases and the structure of the global phase diagram. Selected results for quantum critical properties will be listed as well. Finally, a brief overview is given on experiments which have been interpreted in terms of orbital-selective Mott physics.Comment: 29 pages, 4 figs, mini-review prepared for a special issue of JLT

    Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions

    Get PDF
    Neutral pion transverse momentum spectra were measured in p+C and p+Pb collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment. For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure

    Search for DCC in 158A GeV Pb+Pb Collisions

    Full text link
    A detailed analysis of the phase space distributions of charged particles and photons have been carried out using two independent methods. The results indicate the presence of nonstatistical fluctuations in localized regions of phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199
    corecore