19 research outputs found

    Continuous-Flow Laboratory SAXS for In Situ Determination of the Impact of Hydrophilic Block Length on Spherical Nano-Object Formation during Polymerization-Induced Self-Assembly

    Get PDF
    In situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive. Flow reactors provide an opportunity to obtain temporal resolution by operating at a consistent flow rate. Here, we equip a flow-reactor with an X-ray transparent flow-cell at the outlet which facilitates the use of a low-flux laboratory SAXS instrument for in situ monitoring. The formation and morphological evolution of spherical block copolymer nano-objects was characterized during reversible addition fragmentation chain transfer polymerization of diacetone acrylamide in the presence of a series of poly(dimethylacrylamide) (PDMAm) macromolecular chain transfer agents with varying degrees of polymerization. SAXS analysis indicated that during the polymerization, highly solvated, loosely defined aggregates form after approximately 100 s, followed by expulsion of solvent to form well-defined spherical particles with PDAAm cores and PDMAm stabilizer chains, which then grow as the polymerization proceeds. Analysis also indicates that the aggregation number (Nagg) increases during the reaction, likely due to collisions between swollen, growing nanoparticles. In situ SAXS conducted on PISA syntheses using different PDMAm DPs indicated a varying conformation of the chains in the particle cores, from collapsed chains for PDMAm47 to extended chains for PDMAm143. At high conversion, the final Nagg decreased as a function of increasing PDMAm DP, indicating increased steric stabilization afforded by the longer chains which is reflected by a decrease in both core diameter (from SAXS) and hydrodynamic diameter (from DLS) for a constant core DP of 400

    Potassium iodide reduces the stability of triple-cation perovskite solar cells

    Get PDF
    The addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices. Previous work on the use of potassium iodide (KI) in active layers to passivate defects in triple-cation mixed-halide perovskites has been shown to enhance their luminescence efficiency and reduce current–voltage hysteresis. However, the operational stability of KI passivated perovskite solar cells under ambient conditions remains largely unexplored. By investigating perovskite solar cell performance with SnO2 or TiO2 electron transport layers (ETL), we propose that defect passivation using KI is highly sensitive to the composition of the perovskite–ETL interface. We reconfirm findings from previous reports that KI preferentially interacts with bromide ions in mixed-halide perovskites, and – at concentrations >5 mol% in the precursor solution – modifies the primary absorber composition as well as leading to the phase segregation of an undesirable secondary non-perovskite phase (KBr) at high KI concentration. Importantly, by studying both material and device stability under continuous illumination and bias under ambient/high-humidity conditions, we show that this secondary phase becomes a favourable degradation product, and that devices incorporating KI have reduced stability

    Chapter One Current Challenges and Frameworks

    No full text
    corecore