966 research outputs found
Graphene-based LbL deposited films: further study of electrical and gas sensing properties
Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS) were utilised to construct thin films using layer-by-layer (LbL) electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH) or graphene-CTAB with polyanions (PSS). Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm) of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10%) in electrical conductivity upon exposure to electro-active gases such as HCl and NH3
Graphene-based LbL deposited films: further study of electrical and gas sensing properties
Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS) were utilised to construct thin films using layer-by-layer (LbL) electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH) or graphene-CTAB with polyanions (PSS). Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm) of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10%) in electrical conductivity upon exposure to electro-active gases such as HCl and NH3
Adhesion-induced phase separation of multiple species of membrane junctions
A theory is presented for the membrane junction separation induced by the
adhesion between two biomimetic membranes that contain two different types of
anchored junctions (receptor/ligand complexes). The analysis shows that several
mechanisms contribute to the membrane junction separation. These mechanisms
include (i) the height difference between type-1 and type-2 junctions is the
main factor which drives the junction separation, (ii) when type-1 and type-2
junctions have different rigidities against stretch and compression, the
``softer'' junctions are the ``favored'' species, and the aggregation of the
softer junction can occur, (iii) the elasticity of the membranes mediates a
non-local interaction between the junctions, (iv) the thermally activated shape
fluctuations of the membranes also contribute to the junction separation by
inducing another non-local interaction between the junctions and renormalizing
the binding energy of the junctions. The combined effect of these mechanisms is
that when junction separation occurs, the system separates into two domains
with different relative and total junction densities.Comment: 23 pages, 6 figure
Weakly-Interacting Bosons in a Trap within Approximate Second Quantization Approach
The theory of Bogoliubov is generalized for the case of a weakly-interacting
Bose-gas in harmonic trap. A set of nonlinear matrix equations is obtained to
make the diagonalization of Hamiltonian possible. Its perturbative solution is
used for the calculation of the energy and the condensate fraction of the model
system to show the applicability of the method.Comment: 6 pages, two figures .Presented at the International Symposium on
Quantum Fluids and Solids QFS2006 (Kyoto, Japan
1H, 13C, and 15N resonance assignments of a conserved putative cell wall binding domain from Enterococcus faecalis
Enterococcus faecalis is a major causative agent of hospital acquired infections. The ability of E. faecalis to evade the host immune system is essential during pathogenesis, which has been shown to be dependent on the complete separation of daughter cells by peptidoglycan hydrolases. AtlE is a peptidoglycan hydrolase which is predicted to bind to the cell wall of E. faecalis, via six C-terminal repeat sequences. Here, we report the near complete assignment of one of these six repeats, as well as the predicted backbone structure and dynamics. This data will provide a platform for future NMR studies to explore the ligand recognition motif of AtlE and help to uncover its potential role in E. faecalis virulence
Temperature Variation of Ultra Slow Light in a Cold Gas
A model is developed to explain the temperature dependence of the group
velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594
(1999)). The group velocity is quite sensitive to the change in the spatial
density. The inhomogeneity in the density and its temperature dependence are
primarily responsible for the observed behavior.Comment: 12 pages, 4 figure
Finite temperature behaviour of the ISS-uplifted KKLT model
We study the static phase structure of the ISS-KKLT model for moduli
stabilisation and uplifting to a zero cosmological constant. Since the
supersymmetry breaking sector and the moduli sector are only gravitationally
coupled, we expect negligible quantum effects of the modulus upon the ISS
sector, and the other way around. Under this assumption, we show that the ISS
fields end up in the metastable vacua. The reason is not only that it is
thermally favoured (second order phase transition) compared to the phase
transition towards the supersymmetric vacua, but rather that the metastable
vacua form before the supersymmetric ones. This nice feature is exclusively due
to the presence of the KKLT sector. We also show that supergravity effects are
negligible around the origin of the field space. Finally, we turn to the
modulus sector and show that there is no destabilisation effect coming from the
ISS sector.Comment: 23 pages, 3 figures, mistake corrected, one plot updated, physical
conclusions unchange
Holographic principle in the BDL brane cosmology
We study the holographic principle in the brane cosmology. Especially we
describe how to accommodate the 5D anti de Sitter Schwarzschild (AdSS)
black hole in the Binetruy-Deffayet-Langlois (BDL) approach of brane cosmology.
It is easy to make a connection between a mass of the AdSS black hole
and a conformal field theory (CFT)-radiation dominated universe on the brane in
the moving domain wall approach. But this is not established in the BDL
approach. In this case we use two parameters in the Friedmann
equation. These arise from integration and are really related to the choice of
initial bulk matter. If one chooses a bulk energy density to account
for a mass of the AdSS black hole and the static fifth dimension, a
CFT-radiation term with comes out from the bulk
matter without introducing a localized matter distribution on the brane. This
means that the holographic principle can be established in the BDL brane
cosmology.Comment: 9 pages, a version to appear in PR
The Planck-LFI flight model composite waveguides
The Low Frequency Instrument on board the PLANCK satellite is designed to
give the most accurate map ever of the CMB anisotropy of the whole sky over a
broad frequency band spanning 27 to 77 GHz. It is made of an array of 22
pseudo-correlation radiometers, composed of 11 actively cooled (20 K) Front End
Modules (FEMs), and 11 Back End Modules (BEMs) at 300K. The connection between
the two parts is made with rectangular Wave Guides. Considerations of different
nature (thermal, electromagnetic and mechanical), imposed stringent
requirements on the WGs characteristics and drove their design. From the
thermal point of view, the WG should guarantee good insulation between the FEM
and the BEM sections to avoid overloading the cryocooler. On the other hand it
is essential that the signals do not undergo excessive attenuation through the
WG. Finally, given the different positions of the FEM modules behind the focal
surface and the mechanical constraints given by the surrounding structures,
different mechanical designs were necessary. A composite configuration of
Stainless Steel and Copper was selected to satisfy all the requirements. Given
the complex shape and the considerable length (about 1.5-2 m), manufacturing
and testing the WGs was a challenge. This work deals with the development of
the LFI WGs, including the choice of the final configuration and of the
fabrication process. It also describes the testing procedure adopted to fully
characterize these components from the electromagnetic point of view and the
space qualification process they underwent. Results obtained during the test
campaign are reported and compared with the stringent requirements. The
performance of the LFI WGs is in line with requirements, and the WGs were
successfully space qualified.Comment: this paper is part of the Prelaunch status LFI papers published on
JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals
High-order derivatives of analytic functions are expressible as Cauchy
integrals over circular contours, which can very effectively be approximated,
e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius
of convergence is equal, numerical stability strongly depends on r. We give a
comprehensive study of this effect; in particular we show that there is a
unique radius that minimizes the loss of accuracy caused by round-off errors.
For large classes of functions, though not for all, this radius actually gives
about full accuracy; a remarkable fact that we explain by the theory of Hardy
spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and
by the saddle-point method of asymptotic analysis. Many examples and
non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature
rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat
- …