58 research outputs found

    Competing orders in a magnetic field: spin and charge order in the cuprate superconductors

    Full text link
    We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin density wave order and to the magnetic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the `spin gap' phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning tunnelling microscopy (STM) measurements. We show that with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic neutron scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin and charge order parameters, including spin nematics and phases with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new work of Chen and Ting; (v3) reorganized presentation for improved clarity, and added new appendix on microscopic origin; (v4) final published version with minor change

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Longitudinal lung function assessment of patients hospitalised with COVID-19 using 1H and 129Xe lung MRI

    Get PDF
    BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalised due to COVID-19 without evidence of architectural distortion on structural imaging show longitudinal improvements in lung function measured using 1H and 129Xe magnetic resonance imaging between 6-52 weeks after hospitalisation? STUDY DESIGN AND METHODS: Patients who were hospitalised due to COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25 and 51 weeks after hospital admission in a prospective cohort study between 11/2020 and 02/2022. Imaging protocol: 1H ultra-short echo time, contrast enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion weighted and 129Xe spectroscopic imaging of gas exchange. RESULTS: 9 patients were recruited (57±14 [median±interquartile range] years, 6/9 male). Patients underwent MRI at 6 (N=9), 12 (N=9), 25 (N=6) and 51 (N=8) weeks after hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients demonstrated impaired 129Xe gas transfer (red blood cell to membrane fraction) but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6-25 week period. At 12 weeks, all patients with lung perfusion data (N=6) showed an increase in both pulmonary blood volume and flow when compared to 6 weeks, though this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared to 6-week examinations, however 129Xe gas transfer remained abnormally low at weeks 12, 25 and 51. INTERPRETATION: 129Xe gas transfer was impaired up to one year after hospitalisation in patients who were hospitalised due to COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation wa normal at 52 weeks

    The effect of age and the H1c MAPT haplotype on MAPT expression in human brain

    No full text
    The MAPT H1c haplotype is a risk factor for the neurodegenerative tauopathies progressive supranuclear palsy (PSP) and Alzheimer's disease. We hypothesise that the effect of the H1c haplotype relates to an increase in MAPT expression leading to an increase in tau neurofibrillary tangle deposition. We have evaluated the effect of the MAPT H1c haplotype on the expression of MAPT using allele specific expression, comparing the relative levels of MAPT H1 and H2 RNA derived from post-mortem human brain, unaffected by neurodegenerative disease. Using three assays spanning the MAPT gene we did not detect any effect of H1c on MAPT expression as compared with other haplotypes. We did, however, detect an effect of age on expression of MAPT H1 with a relative decrease in MAPT H1 expression with increased age. Our data suggest that there is an interaction between age and the expression of MAPT

    OnL 1-convergence of Walsh-Fourier series I

    No full text
    • …
    corecore