5,154 research outputs found

    Molecular genetic variation in the African wild rice Oryza longistaminata A. Chev. et Roehr. and its association with environmental variables

    Get PDF
    Molecular markers, complemented by appropriate Geographical Information System (GIS) software packages are powerful tools in mapping the geographical distribution of genetic variation andassessing its relationship with environmental variables. The objective of the study was therefore to investigate the relationship between genetic diversity and eco-geographic variables using Oryzalongistaminata as a case study. The methodology used was a novel technique that combined hierarchical cluster analysis of both molecular diversity generated using Amplified Fragment Length Polymorphism (AFLP) and climate data available in a GIS software. The study clearly established that there is a close relationship between genetic diversity and eco-geographic variables. The study also revealed that genetic diversity is a function of annual rainfall, and peak diversity occurs in intermediate rainfall areas reflecting the ‘curvilinear theory’ of clinal relationship between the level of genetic diversity and rainfall. The clear association of genetic diversity with rainfall allows the extrapolation ofthe potential impacts of global warming on diversity when empirical data on predicted climate models, particularly rainfall, are available. This knowledge would therefore be useful in the development ofconservation measures to mitigate the effects of genetic erosion through climate change

    On fractionality of the path packing problem

    Full text link
    In this paper, we study fractional multiflows in undirected graphs. A fractional multiflow in a graph G with a node subset T, called terminals, is a collection of weighted paths with ends in T such that the total weights of paths traversing each edge does not exceed 1. Well-known fractional path packing problem consists of maximizing the total weight of paths with ends in a subset S of TxT over all fractional multiflows. Together, G,T and S form a network. A network is an Eulerian network if all nodes in N\T have even degrees. A term "fractionality" was defined for the fractional path packing problem by A. Karzanov as the smallest natural number D so that there exists a solution to the problem that becomes integer-valued when multiplied by D. A. Karzanov has defined the class of Eulerian networks in terms of T and S, outside which D is infinite and proved that whithin this class D can be 1,2 or 4. He conjectured that D should be 1 or 2 for this class of networks. In this paper we prove this conjecture.Comment: 18 pages, 5 figures in .eps format, 2 latex files, main file is kc13.tex Resubmission due to incorrectly specified CS type of the article; no changes to the context have been mad

    Nanomedicine against biofilm infections: A roadmap of challenges and limitations

    Get PDF
    Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine

    CWRML: representing crop wild relative conservation and use data in XML

    Get PDF
    Background Crop wild relatives are wild species that are closely related to crops. They are valuable as potential gene donors for crop improvement and may help to ensure food security for the future. However, they are becoming increasingly threatened in the wild and are inadequately conserved, both in situ and ex situ. Information about the conservation status and utilisation potential of crop wild relatives is diverse and dispersed, and no single agreed standard exists for representing such information; yet, this information is vital to ensure these species are effectively conserved and utilised. The European Community-funded project, European Crop Wild Relative Diversity Assessment and Conservation Forum, determined the minimum information requirements for the conservation and utilisation of crop wild relatives and created the Crop Wild Relative Information System, incorporating an eXtensible Markup Language (XML) schema to aid data sharing and exchange. Results Crop Wild Relative Markup Language (CWRML) was developed to represent the data necessary for crop wild relative conservation and ensure that they can be effectively utilised for crop improvement. The schema partitions data into taxon-, site-, and population-specific elements, to allow for integration with other more general conservation biology schemata which may emerge as accepted standards in the future. These elements are composed of sub-elements, which are structured in order to facilitate the use of the schema in a variety of crop wild relative conservation and use contexts. Pre-existing standards for data representation in conservation biology were reviewed and incorporated into the schema as restrictions on element data contents, where appropriate. Conclusion CWRML provides a flexible data communication format for representing in situ and ex situ conservation status of individual taxa as well as their utilisation potential. The development of the schema highlights a number of instances where additional standards-development may be valuable, particularly with regard to the representation of population-specific data and utilisation potential. As crop wild relatives are intrinsically no different to other wild plant species there is potential for the inclusion of CWRML data elements in the emerging standards for representation of biodiversity data

    Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons

    Get PDF
    Lamina I spino-parabrachial neurons (SPNs) receive peripheral nociceptive input, process it and transmit to the supraspinal centres. Although responses of SPNs to cutaneous receptive field stimulations have been intensively studied, the mechanisms of signal processing in these neurons are poorly understood. Therefore, we used an ex-vivo spinal cord preparation to examine synaptic and cellular mechanisms determining specific input-output characteristics of the neurons. The vast majority of the SPNs received a few direct nociceptive C-fiber inputs and generated one spike in response to saturating afferent stimulation, thus functioning as simple transducers of painful stimulus. However, 69% of afferent stimulation-induced action potentials in the entire SPN population originated from a small fraction (19%) of high-output neurons. These neurons received a larger number of direct Ad- and C-fiber inputs, generated intrinsic bursts and efficiently integrated a local network activity via NMDA-receptor-dependent mechanisms. The high-output SPNs amplified and integrated the nociceptive input gradually encoding its intensity into the number of generated spikes. Thus, different mechanisms of signal processing allow lamina I SPNs to play distinct roles in nociception.The authors thank Mr. Andrew Dromaretsky for the technical assistance. P.B. was supported by the National Academy of Sciences of Ukraine (NASU), grant NASU # 0116U004470, grant NASU#67/15-Н. N.V. was supported by the NASU Biotechnology and NASU-KNU grants; NIH 1R01NS113189-01. B.V.S. was supported by the FEDER funds through the COMPETE 2020 (POCI), Portugal 2020, and by the FCT project PTDC/NEU-NMC/1259/2014 (POCI-01-0145-FEDER-016588

    A catalytic alloy approach for graphene on epitaxial SiC on silicon wafers

    Full text link
    © Materials Research Society 2015. We introduce a novel approach to the synthesis of high-quality and highly uniform few-layer graphene on silicon wafers, based on solid source growth from epitaxial 3C-SiC films. Using a Ni/Cu catalytic alloy, we obtain a transfer-free bilayer graphene directly on Si(100) wafers, at temperatures potentially compatible with conventional semiconductor processing. The graphene covers uniformly a 2″ silicon wafer, with a Raman ID/IG band ratio as low as 0.5, indicative of a low defectivity material. The sheet resistance of the graphene is as low as 25 Ω/square, and its adhesion energy to the underlying substrate is substantially higher than transferred graphene. This work opens the avenue for the true wafer-level fabrication of microdevices comprising graphene functional layers. Specifically, we suggest that exceptional conduction qualifies this graphene as a metal replacement for MEMS and advanced on-chip interconnects with ultimate scalability

    The role of chaotic resonances in the solar system

    Get PDF
    Our understanding of the Solar System has been revolutionized over the past decade by the finding that the orbits of the planets are inherently chaotic. In extreme cases, chaotic motions can change the relative positions of the planets around stars, and even eject a planet from a system. Moreover, the spin axis of a planet-Earth's spin axis regulates our seasons-may evolve chaotically, with adverse effects on the climates of otherwise biologically interesting planets. Some of the recently discovered extrasolar planetary systems contain multiple planets, and it is likely that some of these are chaotic as well.Comment: 28 pages, 9 figure
    corecore