1,120 research outputs found

    Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO3_3

    Get PDF
    The microscopic description of the spin-Peierls transition in pure and doped CuGeO_3 is developed taking into account realistic details of crystal structure. It it shown that the presence of side-groups (here Ge) strongly influences superexchange along Cu-O-Cu path, making it antiferromagnetic. Nearest-neighbour and next-nearest neighbour exchange constants JnnJ_{nn} and JnnnJ_{nnn} are calculated. Si doping effectively segments the CuO_2-chains leading to Jnn(Si)≃0J_{nn}(Si)\simeq0 or even slightly ferromagnetic. Strong sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be responsible for the spin-Peierls transition itself (``bond-bending mechanism'' of the transition). The nature of excitations in the isolated and coupled spin-Peierls chains is studied and it is shown that topological excitations (solitons) play crucial role. Such solitons appear in particular in doped systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the TSP(x)T_{SP}(x) phase diagram.Comment: 7 pages, revtex, 7 Postscript figure

    The effect of magnetic dipolar interactions on the interchain spin wave dispersion in CsNiF_3

    Full text link
    Inelastic neutron scattering measurements were performed on the ferromagnetic chain system CsNiF_3 in the collinear antiferromagnetic ordered state below T_N = 2.67K. The measured spin wave dispersion was found to be in good agreement with linear spin wave theory including dipolar interactions. The additional dipole tensor in the Hamiltonian was essential to explain some striking phenomena in the measured spin wave spectrum: a peculiar feature of the dispersion relation is a jump at the zone center, caused by strong dipolar interactions in this system. The interchain exchange coupling constant and the planar anisotropy energy were determined within the present model to be J'/k_B = -0.0247(12)K and A/k_B = 3.3(1)K. This gives a ratio J/J' \approx 500, using the previously determined intrachain coupling constant J/k_B = 11.8$. The small exchange energy J' is of the same order as the dipolar energy, which implies a strong competition between the both interactions.Comment: 18 pages, TeX type, 7 Postscript figures included. To be published in Phys. Rev.

    Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain

    Get PDF
    The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high-resolution configurations, limiting these studies to individual glaciers or regions over short timescales of decades to a few centuries. We present a framework to couple the dynamic ice sheet model PISM (Parallel Ice Sheet Model) with the global ocean general circulation model MOM5 (Modular Ocean Model) via the ice shelf cavity model PICO (Potsdam Ice-shelf Cavity mOdel). As ice shelf cavities are not resolved by MOM5 but are parameterized with the PICO box model, the framework allows the ice sheet and ocean components to be run at resolutions of 16 km and 3∘ respectively. This approach makes the coupled configuration a useful tool for the analysis of interactions between the Antarctic Ice Sheet and the global ocean over time spans of the order of centuries to millennia. In this study, we describe the technical implementation of this coupling framework: sub-shelf melting in the ice sheet component is calculated by PICO from modelled ocean temperatures and salinities at the depth of the continental shelf, and, vice versa, the resulting mass and energy fluxes from melting at the ice–ocean interface are transferred to the ocean component. Mass and energy fluxes are shown to be conserved to machine precision across the considered component domains. The implementation is computationally efficient as it introduces only minimal overhead. Furthermore, the coupled model is evaluated in a 4000 year simulation under constant present-day climate forcing and is found to be stable with respect to the ocean and ice sheet spin-up states. The framework deals with heterogeneous spatial grid geometries, varying grid resolutions, and timescales between the ice and ocean component in a generic way; thus, it can be adopted to a wide range of model set-ups

    Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments.

    Get PDF
    Members of the marine genus Rhodopirellula are attached living bacteria and studies based on cultured Rhodopirellula strains suggested that three closely related species R. baltica, 'R. europaea' and 'R. islandica' have a limited geographic distribution in Europe. To address this hypothesis, we developed a nested PCR for a single gene copy detection of a partial acetyl CoA synthetase (acsA) from intertidal sediments collected all around Europe. Furthermore, we performed growth experiments in a range of temperature, salinity and light conditions. A combination of Basic Local Alignment Search Tool (BLAST) and Minimum Entropy Decomposition (MED) was used to analyze the sequences with the aim to explore the geographical distribution of the species and subspecies. MED has been mainly used for the analysis of the 16S rRNA gene and here we propose a protocol for the analysis of protein-coding genes taking into account the degeneracy of the codons and a possible overestimation of functional diversity. The high-resolution analysis revealed differences in the intraspecies community structure in different geographic regions. However, we found all three species present in all regions sampled and in agreement with growth experiments we demonstrated that Rhodopirellula species do not have a limited geographic distribution in Europe
    • …
    corecore