342 research outputs found

    Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density

    Get PDF
    Abstract We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl

    Jamming non-local quantum correlations

    Get PDF
    We present a possible scheme to tamper with non-local quantum correlations in a way that is consistent with relativistic causality, but goes beyond quantum mechanics. A non-local ``jamming" mechanism, operating within a certain space-time window, would not violate relativistic causality and would not lead to contradictory causal loops. The results presented in this Letter do not depend on any model of how quantum correlations arise and apply to any jamming mechanism.Comment: 10 pp, LaTe

    The relativistic Sagnac Effect: two derivations

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter and electromagnetic beams, counter-propagating in a rotating interferometer, is deduced using two different approaches. From one hand, we show that the relativistic law of velocity addition leads to the well known Sagnac time difference, which is the same independently of the physical nature of the interfering beams, evidencing in this way the universality of the effect. Another derivation is based on a formal analogy with the phase shift induced by the magnetic potential for charged particles travelling in a region where a constant vector potential is present: this is the so called Aharonov-Bohm effect. Both derivations are carried out in a fully relativistic context, using a suitable 1+3 splitting that allows us to recognize and define the space where electromagnetic and matter waves propagate: this is an extended 3-space, which we call "relative space". It is recognized as the only space having an actual physical meaning from an operational point of view, and it is identified as the 'physical space of the rotating platform': the geometry of this space turns out to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also http://digilander.libero.it/solciclo

    Games in Higher Education

    Get PDF
    International audienceThis entry presents an overview of how and why Learning Games are used in higher education.Learning Games can be defined as games that are designed to captivate the learners’ attention and facilitate their learning process. They have explicit educational purposes and can be used for teaching at all levels of education. All types of games can be used for learning: board games, card games, role-playing games, First Person Shooter games, simulation games, management games, puzzle games, treasure hunts…The main characteristic of Learning Games for higher education is the fact that they are designed to teach specific complex skills taught at university or during professional training programs. Unfortunately, it is not infrequent to observe strong opposition on the part of this target audience to this mode of learning, that these adult students associate with children.The use of Learning Games in primary school seems natural to teachers and is encouraged by specialists in didactics and neuroscience. This learning technique is much less frequently used in middle school and is almost completely absent from higher education. Yet teachers at all these levels are faced with the same problems, such as lack of motivation and investment, for which games are known to be an effective solution. This entry presents an overview of the games that can be used for higher education and the reasons why some teachers and students still show resistance to this type of learning. The numerous advantages of games for higher education will then be presented, citing games presently used in universities, in graduate schools and for professional training. Finally, thisDraft : Marfisi-Schottman I. (2019) Games in Higher Education. In: Tatnall A. (eds) Encyclopedia of Education and Information Technologies. Springer, Chamentry presents the current research questions that need to be addressed concerning the design of games for higher education and the acceptance of these games by teachers

    Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density

    Get PDF
    We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate
    corecore