1,659 research outputs found

    Exploring the neutrino mass matrix at M_R scale

    Get PDF
    We discuss the neutrino mass matrix which predicts zero or small values of |V_{13}| in MSSM and found the inequality, sin^2 2theta_{12} <= sin^2 2theta_sol, where sin^2 2theta_{12} is the mixing angle at M_R scale and sin^2 2theta_{sol} is the value determined by the solar neutrino oscillation. This constraint says that the model which predicts a larger value of tan^2 theta_{sol} at M_R than the experimental value is excluded. In particular, the bi-maximal mixing scheme at M_R scale is excluded, from the experimental value tan^2 theta_sol<1. In this model, |V_{13}| and a Dirac phase at m_Z are induced radiatively and turn out to be not small. The effective neutrino mass is expected to be of order 0.05 eV.Comment: revtex4, 20 pages, 6 figure

    SO(10) GUT and Quark-Lepton Mass Matrices

    Full text link
    The phenomenological model that all quark and lepton mass matrices have the same zero texture, namely their (1,1), (1,3) and (3,1) components are zeros, is discussed in the context of SO(10) Grand Unified Theories (GUTs). The mass matrices of type I for quarks are consistent with the experimental data in the quark sector. For the lepton sector, consistent fitting to the data of neutrino oscillation experiments force us to use the mass matrix for the charged leptons which is slightly deviated from type I. Given quark masses and charged lepton masses, the model includes 19 free parameters, whereas the SO(10) GUTs gives 16 constrained equations. Changing the remaining three parameters freely, we can fit all the entries of the CKM quark mixing matrix and the MNS lepton mixing matrix, and three neutrino masses consistently with the present experimental data.Comment: 32pp, REV TeX, 12 EPS Figure

    Electric Charge Quantization

    Full text link
    Experimentally it has been known for a long time that the electric charges of the observed particles appear to be quantized. An approach to understanding electric charge quantization that can be used for gauge theories with explicit U(1)U(1) factors -- such as the standard model and its variants -- is pedagogically reviewed and discussed in this article. This approach uses the allowed invariances of the Lagrangian and their associated anomaly cancellation equations. We demonstrate that charge may be de-quantized in the three-generation standard model with massless neutrinos, because differences in family-lepton--numbers are anomaly-free. We also review the relevant experimental limits. Our approach to charge quantization suggests that the minimal standard model should be extended so that family-lepton--number differences are explicitly broken. We briefly discuss some candidate extensions (e.g. the minimal standard model augmented by Majorana right-handed neutrinos).Comment: 18 pages, LaTeX, UM-P-92/5

    Unified Explanation of Quark and Lepton Masses and Mixings in the Supersymmetric SO(10) Model

    Full text link
    We discussed neutrino masses and mixings in SUSY SO(10) model where quarks and leptons have Yukawa couplings to at least two 10 and one 126ˉ\bar{126} Higgs scalars. In this model, the Dirac and the right-handed Majorana mass terms are expressed by linear combinations of quark and charged lepton mass matrices, which then determine the neutrino mass matrix by the see-saw mechanism. We show that there are various solutions to reproduce a large mixing angle for νμντ\nu_\mu-\nu_\tau and a small mixing angle for νeνμ\nu_e-\nu_\mu, as well as the hierarchical mass spectrum of neutrinos.Comment: LaTeX, 32 pages including 15 eps figure

    Search for Millicharged Particles at SLAC

    Get PDF
    Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such "millicharged" particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted to Physical Review Letter

    Bimaximal mixing from the leptonic new texture for triangular mass matrices

    Full text link
    An analysis of the leptonic texture for the new triangular mass matrices has been carried out. In particular, it is shown that both bimaximal and nearly bimaximal solutions for solar and atmospheric neutrino anomalies can be generated within this pattern. We have also derived exact and compact parametrization of the leptonic mixing matrix in terms of the lepton masses and the parameters α,β\alpha, \beta' and δ\delta. A consistency with the CHOOZ reactor result for Vm13V_m{_{13}} and a smallness of the Jarlskog's invariant parameter are obtained.Comment: 16 pages, late

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Hierarchical Quark Mass Matrices

    Get PDF
    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s_{23}) and the angle in the (1,2) plane (s_{12}) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consists of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s_{13} diagonalization angles are sufficiently small compared to the product s_{12}s_{23}, two special CKM parametrizations emerge: the R_{12}R_{23}R_{12} parametrization follows with s_{23} taken before the s_{12} rotation, and vice versa for the R_{23}R_{12}R_{23} parametrization.Comment: LaTeX, 19 pages. References added, minor changes in text. Version published in Phys. Rev.

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
    corecore