273 research outputs found

    Inhibition of mapk signalling promotes cell cycle arrest and sensitises intrahepatic cholangiocarcinoma cells to chemotherapy

    Get PDF
    Introduction: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatic malignancy, accounting for approximately 15% of cases of primary liver cancer. Although new treatments have increased survival for many other cancers, including the more common primary hepatocellular carcinoma, treatment strategies and survival for patients with ICC have seen little improvement. Our previous studies suggest that the mitogen-activated protein kinase (MAPK) signalling plays a central role in the regulation of cell proliferation in human ICC. However the molecular mechanisms are poorly understood. In this study, we aim to explore whether inhibition of the MAPK pathway and its downstream effectors enhances the sensitisation of ICC cells to the chemotherapeutic agent cisplatinum. Method: We used a combinatorial approach of immunohistochemical and gene expression analyses to investigate the expression of MAPK-related genes in ICC tumours. Furthermore, by using in-vitroand in-vivoanalyses we have characterised the function of a novel MAPK downstream effector in ICC cells. Results: The expression of MAPK signalling was determined by immunohistochemical staining in tumour samples from a cohort of 14 ICC patients. High expression of phospho-activated MAPK was observed in 71.4% (10/14) of ICC cases as compared with surrounding nontumour tissue. Likewise, expression of JDP, a downstream effector of the MAPK signalling, was scored as high intensity in 64.3% (9/14). Strikingly, elevated expression of JDP transcripts was also observed in two independent cohorts of human ICC (n = 149 and n = 109 per group, respectively) compared to surrounding normal liver tissue. Consistent with the in-vivo analyses of human samples, immunoblotting analyses showed constitutive activation of MAPK and expression of JDP in ICC-derived cells (i.e. SG231, CCLP-1 and HuCCT1). Using loss-of-function analyses, we demonstrates that knockdown of JDP in ICC-derived cells resulted in cell cycle arrest and reduced expression of cell cycle regulators (i.e. cyclins), and had minimal effect on apoptosis. Chemical inhibition of JDP significantly sensitises ICC-derived cells to cisplatinum (P < 0.001). Conclusion: These results demonstrate that enhanced activation of MAPK signalling is important for ICC cell proliferation and suggest that targeting its downstream effectors is a potential therapeutic strategy for ICC

    Tumor necrosis factor-inducible gene 6 promotes liver regeneration in mice with acute liver injury

    Get PDF
    INTRODUCTION: Tumor necrosis factor-inducible gene 6 protein (TSG-6), one of the cytokines released by human mesenchymal stem/stromal cells (hMSC), has an anti-inflammatory effect and alleviates several pathological conditions; however, the hepatoprotective potential of TSG-6 remains unclear. We investigated whether TSG-6 promoted liver regeneration in acute liver failure. METHODS: The immortalized hMSC (B10) constitutively over-expressing TSG-6 or empty plasmid (NC: Negative Control) were established, and either TSG-6 or NC-conditioned medium (CM) was intraperitoneally injected into mice with acute liver damage caused by CCl(4). Mice were sacrificed at 3 days post-CM treatment. RESULTS: Higher expression and the immunosuppressive activity of TSG-6 were observed in CM from TSG-6-hMSC. The obvious histomorphological liver injury and increased level of liver enzymes were shown in CCl(4)-treated mice with or without NC-CM, whereas those observations were markedly ameliorated in TSG-6-CM-treated mice with CCl(4). Ki67-positive hepatocytic cells were accumulated in the liver of the CCl(4) + TSG-6 group. RNA analysis showed the decrease in both of inflammation markers, tnfα, il-1β, cxcl1 and cxcl2, and fibrotic markers, tgf-β1, α-sma and collagen α1, in the CCl(4) + TSG-6 group, compared to the CCl(4) or the CCl(4) + NC group. Protein analysis confirmed the lower expression of TGF-β1 and α-SMA in the CCl(4) + TSG-6 than the CCl(4) or the CCl(4) + NC group. Immunostaining for α-SMA also revealed the accumulation of the activated hepatic stellate cells in the livers of mice in the CCl(4) and CCl(4) + NC groups, but not in the livers of mice from the CCl(4) + TSG-6 group. The cultured LX2 cells, human hepatic stellate cell line, in TSG-6-CM showed the reduced expression of fibrotic markers, tgf-β1, vimentin and collagen α1, whereas the addition of the TSG-6 antibody neutralized the inhibitory effect of TSG-6 on the activation of LX2 cells. In addition, cytoplasmic lipid drops, the marker of inactivated hepatic stellate cell, were detected in TSG-6-CM-cultured LX2 cells, only. The suppressed TSG-6 activity by TSG-6 antibody attenuated the restoration process in livers of TSG-6-CM-treated mice with CCl(4). CONCLUSIONS: These results demonstrated that TSG-6 contributed to the liver regeneration by suppressing the activation of hepatic stellate cells in CCl(4)-treated mice, suggesting the therapeutic potential of TSG-6 for acute liver failure. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-015-0019-z) contains supplementary material, which is available to authorized users

    Macrophages Homing to Metastatic Lymph Nodes Can Be Monitored with Ultrasensitive Ferromagnetic Iron-Oxide Nanocubes and a 1.5T Clinical MR Scanner

    Get PDF
    Background: Due to the ability of macrophages to specifically home to tumors, their potential use as a delivery vehicle for cancer therapeutics has been suggested. Tracking the delivery and engraftment of macrophages into human tumors with a 1.5T clinical MR scanner requires the development of sensitive contrast agents for cell labeling. Therefore, this study aimed to determine whether intravenously injected macrophages could target a primary tumor as well as metastatic LNs, and whether these cells could be detected in vivo by MRI. Methodology: Peritoneal macrophages were obtained from BALB/c nude mice. The viability, phagocytotic capacity and migratory activity of the macrophages were assessed. MR imaging was performed using a clinical 1.5 T MR scanner and we estimated the T2 * of the labeled macrophages. Metastatic lymph nodes were produced in BALB/c nude mice. We administrated 2610 6 macrophages labeled with 50 mg Fe/mL FIONs intravenously into the mice. In the 3D T2 * GRE MR images obtained one day after the injection of the labeled macrophages or FION solution, the percentages of pixels in the tumors or LNs below the minimum normalized SI (signal intensity) threshold were summated and reported as the black pixel count (%) for the FION hypointensity. Tumors in the main tumor model as well as the brachial, axillary and inguinal lymph nodes in the metastatic LN models were removed and stained. For all statistical analyses, single-group data were assessed using t test or the Mann-Whitney test. Repeated measurements analysis of variance (ANOVA) with Tukey–Krame

    Ameliorated ConA-Induced Hepatitis in the Absence of PKC-theta

    Get PDF
    Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis

    Divergence in transcriptional and regulatory responses to mating in male and female fruitflies

    Get PDF
    Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness
    corecore