258 research outputs found

    Analysis of Tail Rotor Orthogonal Blade Vortex Interaction. Dept Report 0301

    Get PDF
    During helicopter operation, the wake of the main rotor can interact with the main rotor blades and the tail rotor blades. The focus of the present research Is the interaction of the main rotor tip vortices with the tail rotor blades. Helicopters are particularly susceptible to this type of blade vortex interaction during low angle descent and climb. As a result of these interactions high decibel noise is emitted and control degradation may occur. The aim of the present research is to indicially model the blade vortex interaction for the limiting orthogonal case. It is hoped that the research will provide a greater understanding of the complex interactions leading, in the long term, to the potential development of more environmentally appealing civil aircraft and increased component life. In this report initial analysis of pressure data from the orthogonal interactions of a vortex with a stationary blade, collected in the University of Glasgow 2.64 m by 2.04 m wind tunnel is presented. This analysis involved removing high frequency noise and random freestream turbulence effects from the data before examining the impulsive change in normal force during the initial stages of the interaction. It has been established that the impulsive response is most severe in the vicinity of the vortex core centreline where the axial core flow in the vortex is the dominant parameter. With increasing distance from the core, the severity of the response becomes dependent on the sense of rotation of the vortex. Finally, the future direction of the work towards development of a robust indicial model of the phenomenon is discussed

    Analysis of Tail Rotor Orthogonal Blade Vortex Interaction. Dept Report 0301

    Get PDF
    During helicopter operation, the wake of the main rotor can interact with the main rotor blades and the tail rotor blades. The focus of the present research Is the interaction of the main rotor tip vortices with the tail rotor blades. Helicopters are particularly susceptible to this type of blade vortex interaction during low angle descent and climb. As a result of these interactions high decibel noise is emitted and control degradation may occur. The aim of the present research is to indicially model the blade vortex interaction for the limiting orthogonal case. It is hoped that the research will provide a greater understanding of the complex interactions leading, in the long term, to the potential development of more environmentally appealing civil aircraft and increased component life. In this report initial analysis of pressure data from the orthogonal interactions of a vortex with a stationary blade, collected in the University of Glasgow 2.64 m by 2.04 m wind tunnel is presented. This analysis involved removing high frequency noise and random freestream turbulence effects from the data before examining the impulsive change in normal force during the initial stages of the interaction. It has been established that the impulsive response is most severe in the vicinity of the vortex core centreline where the axial core flow in the vortex is the dominant parameter. With increasing distance from the core, the severity of the response becomes dependent on the sense of rotation of the vortex. Finally, the future direction of the work towards development of a robust indicial model of the phenomenon is discussed

    Reconstructing Holocene geomagnetic field variation: new methods, models and implications

    Get PDF
    Reconstructions of the Holocene geomagnetic field and how it varies on millennial timescales are important for understanding processes in the core but may also be used to study long-term solar-terrestrial relationships and as relative dating tools for geological and archaeological archives. Here, we present a new family of spherical harmonic geomagnetic field models spanning the past 9000 yr based on magnetic field directions and intensity stored in archaeological artefacts, igneous rocks and sediment records. A new modelling strategy introduces alternative data treatments with a focus on extracting more information from sedimentary data. To reduce the influence of a few individual records all sedimentary data are resampled in 50-yr bins, which also means that more weight is given to archaeomagnetic data during the inversion. The sedimentary declination data are treated as relative values and adjusted iteratively based on prior information. Finally, an alternative way of treating the sediment data chronologies has enabled us to both assess the likely range of age uncertainties, often up to and possibly exceeding 500 yr and adjust the timescale of each record based on comparisons with predictions from a preliminary model. As a result of the data adjustments, power has been shifted from quadrupole and octupole to higher degrees compared with previous Holocene geomagnetic field models. We find evidence for dominantly westward drift of northern high latitude high intensity flux patches at the core mantle boundary for the last 4000 yr. The new models also show intermittent occurrence of reversed flux at the edge of or inside the inner core tangent cylinder, possibly originating from the equator

    Increased facial asymmetry in focal epilepsies associated with unilateral lesions

    Get PDF
    The epilepsies are now conceptualized as network disruptions: focal epilepsies are considered to have network alterations in the hemisphere of seizure onset, whilst generalized epilepsies are considered to have bi-hemispheric network changes. Increasingly, many epilepsies are also considered to be neurodevelopmental disorders, with early changes in the brain underpinning seizure biology. The development of the structure of the face is influenced by complex molecular interactions between surface ectoderm and underlying developing forebrain and neural crest cells. This influence is likely to continue postnatally, given the evidence of facial growth changes over time in humans until at least 18 years of age. In this case–control study, we hypothesized that people with lateralized focal epilepsies (i.e. unilateral network changes) have an increased degree of facial asymmetry, compared with people with generalized epilepsies or controls without epilepsy. We applied three-dimensional stereophotogrammetry and dense surface models to evaluate facial asymmetry in people with epilepsy, aiming to generate new tools to explore pathophysiological mechanisms in epilepsy. We analysed neuroimaging data to explore the correlation between face and brain asymmetry. We consecutively recruited 859 people with epilepsy attending the epilepsy clinics at a tertiary referral centre. We used dense surface modelling of the full face and signature analyses of three-dimensional facial photographs to analyse facial differences between 378 cases and 205 healthy controls. Neuroimaging around the time of the facial photograph was available for 234 cases. We computed the brain asymmetry index between contralateral regions. Cases with focal symptomatic epilepsy associated with unilateral lesions showed greater facial asymmetry compared to controls (P = 0.0001, two-sample t-test). This finding was confirmed by linear regression analysis after controlling for age and gender. We also found a significant correlation between duration of illness and the brain asymmetry index of total average cortical thickness (r = −0.19, P = 0.0075) but not for total average surface area (r = 0.06, P = 0.3968). There was no significant correlation between facial asymmetry and asymmetry of regional cortical thickness or surface area. We propose that the greater facial asymmetry in cases with focal epilepsy caused by unilateral abnormality might be explained by early unilateral network disruption, and that this is independent of underlying brain asymmetry. Three-dimensional stereophotogrammetry and dense surface modelling are a novel powerful phenotyping tool in epilepsy that may permit greater understanding of pathophysiology in epilepsy, and generate further insights into the development of cerebral networks underlying epilepsy, and the genetics of facial and neural development

    Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power

    Get PDF
    The Global Fire Assimilation System (GFASv1.0) calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spurious FRP observations of volcanoes, gas flares and other industrial activity. The combustion rate is subsequently calculated with land cover-specific conversion factors. Emission factors for 40 gas-phase and aerosol trace species have been compiled from a literature survey. The corresponding daily emissions have been calculated on a global 0.5° × 0.5° grid from 2003 to the present. General consistency with the Global Fire Emission Database version 3.1 (GFED3.1) within its accuracy is achieved while maintaining the advantages of an FRP-based approach: GFASv1.0 makes use of the quantitative information on the combustion rate that is contained in the FRP observations, and it detects fires in real time at high spatial and temporal resolution. GFASv1.0 indicates omission errors in GFED3.1 due to undetected small fires. It also exhibits slightly longer fire seasons in South America and North Africa and a slightly shorter fire season in Southeast Asia. GFASv1.0 has already been used for atmospheric reactive gas simulations in an independent study, which found good agreement with atmospheric observations. We have performed simulations of the atmospheric aerosol distribution with and without the assimilation of MODIS aerosol optical depth (AOD). They indicate that the emissions of particulate matter need to be boosted by a factor of 2–4 to reproduce the global distribution of organic matter and black carbon. This discrepancy is also evident in the comparison of previously published top-down and bottom-up estimates. For the time being, a global enhancement of the particulate matter emissions by 3.4 is recommended. Validation with independent AOD and PM10 observations recorded during the Russian fires in summer 2010 show that the global Monitoring Atmospheric Composition and Change (MACC) aerosol model with GFASv1.0 aerosol emissions captures the smoke plume evolution well when organic matter and black carbon are enhanced by the recommended factor. In conjunction with the assimilation of MODIS AOD, the use of GFASv1.0 with enhanced emission factors quantitatively improves the forecast of the aerosol load near the surface sufficiently to allow air quality warnings with a lead time of up to four days

    Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation

    Get PDF
    This study presents the new aerosol assimilation system, developed at the European Centre for Medium-Range Weather Forecasts, for the Global and regional Earth-system Monitoring using Satellite and in-situ data (GEMS) project. The aerosol modeling and analysis system is fully integrated in the operational four-dimensional assimilation apparatus. Its purpose is to produce aerosol forecasts and reanalyses of aerosol fields using optical depth data from satellite sensors. This paper is the second of a series which describes the GEMS aerosol effort. It focuses on the theoretical architecture and practical implementation of the aerosol assimilation system. It also provides a discussion of the background errors and observations errors for the aerosol fields, and presents a subset of results from the 2-year reanalysis which has been run for 2003 and 2004 using data from the Moderate Resolution Imaging Spectroradiometer on the Aqua and Terra satellites. Independent data sets are used to show that despite some compromises that have been made for feasibility reasons in regards to the choice of control variable and error characteristics, the analysis is very skillful in drawing to the observations and in improving the forecasts of aerosol optical depth

    Anaesthesia Choice for Creation of Arteriovenous Fistula (ACCess) study protocol : a randomised controlled trial comparing primary unassisted patency at 1 year of primary arteriovenous fistulae created under regional compared to local anaesthesia

    Get PDF
    INTRODUCTION: Arteriovenous fistulae (AVF) are the 'gold standard' vascular access for haemodialysis. Universal usage is limited, however, by a high early failure rate. Several small, single-centre studies have demonstrated better early patency rates for AVF created under regional anaesthesia (RA) compared with local anaesthesia (LA). The mechanistic hypothesis is that the sympathetic blockade associated with RA causes vasodilatation and increased blood flow through the new AVF. Despite this, considerable variation in practice exists in the UK. A high-quality, adequately powered, multicentre randomised controlled trial (RCT) is required to definitively inform practice. METHODS AND ANALYSIS: The Anaesthesia Choice for Creation of Arteriovenous Fistula (ACCess) study is a multicentre, observer-blinded RCT comparing primary radiocephalic/brachiocephalic AVF created under regional versus LA. The primary outcome is primary unassisted AVF patency at 1 year. Access-specific (eg, stenosis/thrombosis), patient-specific (including health-related quality of life) and safety secondary outcomes will be evaluated. Health economic analysis will also be undertaken. ETHICS AND DISSEMINATION: The ACCess study has been approved by the West of Scotland Research and ethics committee number 3 (20/WS/0178). Results will be published in open-access peer-reviewed journals within 12 months of completion of the trial. We will also present our findings at key national and international renal and anaesthetic meetings, and support dissemination of trial outcomes via renal patient groups. TRIAL REGISTRATION NUMBER: ISRCTN14153938. SPONSOR: NHS Greater Glasgow and Clyde GN19RE456, Protocol V.1.3 (8 May 2021), REC/IRAS ID: 290482

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    The Application of a Geographically Weighted Principal Component Analysis for Exploring Twenty-three Years of Goat Population Change across Mongolia

    Get PDF
    The dzud are extreme weather events in Mongolia of deep snow, severe cold, or other conditions that render forage unavailable or inaccessible, which in turn results in extensive livestock deaths. Mongolia is economically vulnerable to extreme events due to an increase in nonprofessional herders and the livestock population, brought about by a deregularized industry. Thus, it is hugely informative to try to understand the spatial and temporal trends of livestock population change. To this end, annual livestock census data are exploited and a geographically weighted principal component analysis (GWPCA) is applied to goat data recorded from 1990 to 2012 in 341 regions. This application of GWPCA to temporal data is novel and is able to account for both temporal and spatial patterns in goat population change. Furthermore, the GWPCA methodology is extended to simultaneously optimize the number of components to retain and the kernel bandwidth. In doing so, this study not only advances the GWPCA method but provides a useful insight into the spatiotemporal variations of the Mongolian goat population
    corecore