329 research outputs found

    Prediction of a strong polarizing field in thin film paraelectrics

    Get PDF
    We demonstrate the existence of a polarizing field in thin films of insulators with charged ionic layers. The polarizing field derives from the same physics as the well-known depolarizing field that suppresses ferroelectric polarization in thin-film ferroelectrics, but instead drives thin films of materials that are centrosymmetric and paraelectric in their bulk form into a noncentrosymmetric, polar state. We illustrate the behavior using density-functional computations for perovskite-structure potassium tantalate, KTaO3, which is of considerable interest for its high dielectric constant, proximity to a quantum critical point, and superconductivity. We then provide a simple recipe to identify whether a particular material and film orientation will exhibit the effect and develop an electrostatic model to estimate the critical thickness of the induced polarization in terms of basic material parameters. Our results provide practical guidelines for exploiting the electrostatic properties of thin-film ionic insulators to engineer novel functionalities for nanoscale devices

    Effect of magnetic field and temperature on the ferroelectric loop in MnWO4

    Full text link
    The ferroelectric properties of MnWO4 single crystal have been investigated. Despite a relatively low remanent polarization, we show that the sample is ferroelectric. The shape of the ferroelectric loop of MnWO4 strongly depends on magnetic field and temperature. While its dependence does not directly correlate with the magnetocapacitance effect before the paraelectric transition, the effect of magnetic field on the ferroelectric polarization loop supports magnetoelectric coupling.Comment: 3 pages, 4 figures, first report on ferroelectric loop in MnWO

    Magnetophononics: ultrafast spin control through the lattice

    Full text link
    Using a combination of first-principles and magnetization-dynamics calculations, we study the effect of the intense optical excitation of phonons on the magnetic behavior in insulating magnetic materials. Taking the prototypical magnetoelectric \CrO\ as our model system, we show that excitation of a polar mode at 17 THz causes a pronounced modification of the magnetic exchange interactions through a change in the average Cr-Cr distance. In particular, the quasi-static deformation induced by nonlinear phononic coupling yields a structure with a modified magnetic state, which persists for the duration of the phonon excitation. In addition, our time-dependent magnetization dynamics computations show that systematic modulation of the magnetic exchange interaction by the phonon excitation modifies the magnetization dynamics. This temporal modulation of the magnetic exchange interaction strengths using phonons provides a new route to creating non-equilibrium magnetic states and suggests new avenues for fast manipulation of spin arrangements and dynamics.Comment: 11 pages with 7 figure

    First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite

    Full text link
    We present a first-principles density functional study of the structural, electronic and magnetic properties of the ferroelectric domain walls in multiferroic BiFeO3. We find that domain walls in which the rotations of the oxygen octahedra do not change their phase when the polarization reorients are the most favorable, and of these the 109 degree domain wall centered around the BiO plane has the lowest energy. The 109 degree and 180 degree walls have a significant change in the component of their polarization perpendicular to the wall; the corresponding step in the electrostatic potential is consistent with a recent report of electrical conductivity at the domain walls. Finally, we show that changes in the Fe-O-Fe bond angles at the domain walls cause changes in the canting of the Fe magnetic moments which can enhance the local magnetization at the domain walls.Comment: 9 pages, 20 figure

    Ferrodistortive instability at the (001) surface of half-metallic manganites

    Full text link
    We present the structure of the fully relaxed (001) surface of the half-metallic manganite La0.7Sr0.3MnO3, calculated using density functional theory within the generalized gradient approximation (GGA). Two relevant ferroelastic order parameters are identified and characterized: The tilting of the oxygen octahedra, which is present in the bulk phase, oscillates and decreases towards the surface, and an additional ferrodistortive Mn off-centering, triggered by the surface, decays monotonically into the bulk. The narrow d-like energy band that is characteristic of unrelaxed manganite surfaces is shifted down in energy by these structural distortions, retaining its uppermost layer localization. The magnitude of the zero-temperature magnetization is unchanged from its bulk value, but the effective spin-spin interactions are reduced at the surface.Comment: 4 pages, 2 figure

    Coupling between magnetic ordering and structural instabilities in perovskite biferroics: A first-principles study

    Get PDF
    We use first-principles density functional theory-based calculations to investigate structural instabilities in the high symmetry cubic perovskite structure of rare-earth (R == La, Y, Lu) and Bi-based biferroic chromites, focusing on Γ\Gamma and RR point phonons of states with para-, ferro-, and antiferromagnetic ordering. We find that (a) the structure with G-type antiferromagnetic ordering is most stable, (b) the most dominant structural instabilities in these oxides are the ones associated with rotations of oxygen octahedra, and (c) structural instabilities involving changes in Cr-O-Cr bond angle depend sensitively on the changes in magnetic ordering. The dependence of structural instabilities on magnetic ordering can be understood in terms of how super-exchange interactions depend on the Cr-O-Cr bond angles and Cr-O bond lengths. We demonstrate how adequate buckling of Cr-O-Cr chains can favour ferromagnetism. Born effective charges (BEC) calculated using the Berry phase expression are found to be anomalously large for the A-cations, indicating their chemical relevance to ferroelectric distortions.Comment: 8 pages, 13 figure

    Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite

    Full text link
    The dependencies on strain and oxygen vacancies of the ferroelectric polarization and the weak ferromagnetic magnetization in the multiferroic material bismuth ferrite, BiFeO_3, are investigated using first principles density functional theory calculations. The electric polarization is found to be rather independent of strain, in striking contrast to most conventional perovskite ferroelectrics. It is also not significantly affected by oxygen vacancies, or by the combined presence of strain and oxygen vacancies. The magnetization is also unaffected by strain, however the incorporation of oxygen vacancies can alter the magnetization slightly, and also leads to the formation of Fe^{2+}. These results are discussed in light of recent experiments on epitaxial films of BiFeO_3 which reported a strong thickness dependence of both magnetization and polarization.Comment: 9 pages, 3 figure
    corecore