81 research outputs found

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Three-dimensional reconstruction of synapses and dendritic spines in the rat and ground squirrel hippocampus: New structural-functional paradigms for synaptic function

    Get PDF
    Published data are reviewed along with our own data on synaptic plasticity and rearrangements of synaptic organelles in the central nervous system. Contemporary laser scanning and confocal microscopy techniques are discussed, along with the use of serial ultrathin sections for in vivo and in vitro studies of dendritic spines, including those addressing relationships between morphological changes and the efficiency of synaptic transmission, especially in conditions of the long-term potentiation model. Different categories of dendritic spines and postsynaptic densities are analyzed, as are the roles of filopodia in originating spines. The role of serial ultrathin sections for unbiased quantitative stereological analysis and three-dimensional reconstruction is assessed. The authors data on the formation of more than two synapses on single mushroom spines on neurons in hippocampal field CA1 are discussed. Analysis of these data provides evidence for new paradigms in both the organization and functioning of synapses

    Patient safety culture in care homes for older people: a scoping review

    Get PDF
    Background: In recent years, there has been an increasing focus on the role of safety culture in preventing incidents such as medication errors and falls. However, research and developments in safety culture has predominantly taken place in hospital settings, with relatively less attention given to establishing a safety culture in care homes. Despite safety culture being accepted as an important quality indicator across all health and social care settings, the understanding of culture within social care settings remains far less developed than within hospitals. It is therefore important that the existing evidence base is gathered and reviewed in order to understand safety culture in care homes. Methods: A scoping review was undertaken to describe the availability of evidence related to care homes’ patient safety culture, what these studies focused on, and identify any knowledge gaps within the existing literature. Included papers were each reviewed by two authors for eligibility and to draw out information relevant to the scoping review. Results: Twenty-four empirical papers and one literature review were included within the scoping review. The collective evidence demonstrated that safety culture research is largely based in the USA, within Nursing Homes rather than Residential Home settings. Moreover, the scoping review revealed that empirical evidence has predominantly used quantitative measures, and therefore the deeper levels of culture have not been captured in the evidence base. Conclusions: Safety culture in care homes is a topic that has not been extensively researched. The review highlights a number of key gaps in the evidence base, which future research into safety culture in care home should attempt to address

    Estimation of the number of synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling

    Get PDF
    Determining the number of synapses that are present in different brain regions is crucial to understand brain connectivity as a whole. Membrane-associated guanylate kinases (MAGUKs) are a family of scaffolding proteins that are expressed in excitatory glutamatergic synapses. We used genetic labeling of two of these proteins (PSD95 and SAP102), and Spinning Disc confocal Microscopy (SDM), to estimate the number of fluorescent puncta in the CA1 area of the hippocampus. We also used FIB-SEM, a three-dimensional electron microscopy technique, to calculate the actual numbers of synapses in the same area. We then estimated the ratio between the three-dimensional densities obtained with FIB-SEM (synapses/µm) and the bi-dimensional densities obtained with SDM (puncta/100 µm). Given that it is impractical to use FIB-SEM brain-wide, we used previously available SDM data from other brain regions and we applied this ratio as a conversion factor to estimate the minimum density of synapses in those regions. We found the highest densities of synapses in the isocortex, olfactory areas, hippocampal formation and cortical subplate. Low densities were found in the pallidum, hypothalamus, brainstem and cerebellum. Finally, the striatum and thalamus showed a wide range of synapse densities.This work was supported by grants from the following entities: the Spanish “Ministerio de Ciencia, Innovación y Universidades” (Grant PGC2018-094307-B-I00 and the Cajal Blue Brain Project [C080020-09; the Spanish partner of the Blue Brain Project initiative from EPFL, Switzerland]; the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 785907 (Human Brain Project, SGA2); the Wellcome Trust (Technology Development Grant 202932); and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (695568 SYNNOVATE). L.T.-R. is a recipient of grants from the EMBO Long-term fellowship 2016–2018 and the IBRO-PERC InEurope grants programme

    The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebrospinal fluid (CSF) contacts many brain regions and may mediate humoral signaling distinct from synaptic neurotransmission. However, synthesis and transport mechanisms for such signaling are not defined. The purpose of this study was to investigate whether human CSF contains discrete structures that may enable the regulation of humoral transmission.</p> <p>Methods</p> <p>Lumbar CSF was collected prospectively from 17 participants: with no neurological or psychiatric disease, with Alzheimer's disease, multiple sclerosis, or migraine; and ventricular CSF from two cognitively healthy participants with long-standing shunts for congenital hydrocephalus. Cell-free CSF was subjected to ultracentrifugation to yield supernatants and pellets that were examined by transmission electron microscopy, shotgun protein sequencing, electrophoresis, western blotting, lipid analysis, enzymatic activity assay, and immuno-electron microscopy.</p> <p>Results</p> <p>Over 3,600 CSF proteins were identified from repeated shotgun sequencing of cell-free CSF from two individuals with Alzheimer's disease: 25% of these proteins are normally present in membranes. Abundant nanometer-scaled structures were observed in ultracentrifuged pellets of CSF from all 16 participants examined. The most common structures included synaptic vesicle and exosome components in 30-200 nm spheres and irregular blobs. Much less abundant nanostructures were present that derived from cellular debris. Nanostructure fractions had a unique composition compared to CSF supernatant, richer in omega-3 and phosphoinositide lipids, active prostanoid enzymes, and fibronectin.</p> <p>Conclusion</p> <p>Unique morphology and biochemistry features of abundant and discrete membrane-bound CSF nanostructures are described. Prostaglandin H synthase activity, essential for prostanoid production and previously unknown in CSF, is localized to nanospheres. Considering CSF bulk flow and its circulatory dynamics, we propose that these nanostructures provide signaling mechanisms <it>via </it>volume transmission within the nervous system that are for slower, more diffuse, and of longer duration than synaptic transmission.</p

    Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines

    Get PDF
    The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM) and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways

    Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus

    Get PDF
    The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system

    A Daily Diary Approach to the Examination of Chronic Stress, Daily Hassles and Safety Perceptions in Hospital Nursing

    Get PDF
    Purpose: Stress is a significant concern for individuals and organisations. Few studies have explored stress, burnout and patient safety in hospital nursing on a daily basis at the individual level. This study aimed to examine the effects of chronic stress and daily hassles on safety perceptions, the effect of chronic stress on daily hassles experienced and chronic stress as a potential moderator. Method: Utilising a daily diary design, 83 UK hospital nurses completed three end-of-shift diaries, yielding 324 person days. Hassles, safety perceptions and workplace cognitive failure were measured daily, and a baseline questionnaire included a measure of chronic stress. Hierarchical multivariate linear modelling was used to analyse the data. Results: Higher chronic stress was associated with more daily hassles, poorer perceptions of safety and being less able to practise safely, but not more workplace cognitive failure. Reporting more daily hassles was associated with poorer perceptions of safety, being less able to practise safely and more workplace cognitive failure. Chronic stress did not moderate daily associations. The hassles reported illustrate the wide-ranging hassles nurses experienced. Conclusion: The findings demonstrate, in addition to chronic stress, the importance of daily hassles for nurses’ perceptions of safety and the hassles experienced by hospital nurses on a daily basis. Nurses perceive chronic stress and daily hassles to contribute to their perceptions of safety. Measuring the number of daily hassles experienced could proactively highlight when patient safety threats may arise, and as a result, interventions could usefully focus on the management of daily hassles
    corecore