218 research outputs found

    The use of actuated flexible plates for adaptive shock control bumps

    Get PDF

    The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?

    Get PDF
    This work seeks to understand the kinetics of O2 and SO2 consumption of air-saturated red wine as a function of its chemical composition, and to describe the chemical changes suffered during the process in relation to the kinetics. Oxygen Consumption Rates (OCRs) are faster with higher copper and epigallocatechin contents and with higher absorbance at 620 nm and slower with higher levels of gallic acid and catechin terminal units in tannins. Acetaldehyde Reactive Polyphenols (ARPs) may be key elements determining OCRs. It is confirmed that SO2 is poorly consumed in the first saturation. Phenylalanine, methionine and maybe, cysteine, seem to be consumed instead. A low SO2 consumption is favoured by low levels of SO2, by a low availability of free SO2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile poor in epigallocatechin and rich in catechin-rich tannins. Wines consuming SO2 efficiently consume more epigallocatechin, prodelphinidins and procyanidins

    On the Aggregation of Inertial Particles in Random Flows

    Full text link
    We describe a criterion for particles suspended in a randomly moving fluid to aggregate. Aggregation occurs when the expectation value of a random variable is negative. This random variable evolves under a stochastic differential equation. We analyse this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic differential equation is a Langevin equation.Comment: 16 pages, 2 figure

    Unmixing in Random Flows

    Full text link
    We consider particles suspended in a randomly stirred or turbulent fluid. When effects of the inertia of the particles are significant, an initially uniform scatter of particles can cluster together. We analyse this 'unmixing' effect by calculating the Lyapunov exponents for dense particles suspended in such a random three-dimensional flow, concentrating on the limit where the viscous damping rate is small compared to the inverse correlation time of the random flow (that is, the regime of large Stokes number). In this limit Lyapunov exponents are obtained as a power series in a parameter which is a dimensionless measure of the inertia. We report results for the first seven orders. The perturbation series is divergent, but we obtain accurate results from a Pade-Borel summation. We deduce that particles can cluster onto a fractal set and show that its dimension is in satisfactory agreement with previously reported in simulations of turbulent Navier-Stokes flows. We also investigate the rate of formation of caustics in the particle flow.Comment: 39 pages, 8 figure

    Isgur-Wise Function and VcbV_{cb} from Bethe-Salpeter Equations

    Full text link
    We calculate the Isgur-Wise function from the solutions of the Bethe-Salpeter equations. The shape of the Isgur-Wise function thus calculated is a prediction of the Bethe-Salpeter equations and does not depend on undetermined parameters. We develop an analytical approximation to our Isgur-Wise function in the form ξ(ω)=η[1ρ2η(ω1)+a(ω1)3/2]\xi ( \omega) = \eta [ 1 - \frac{{\rho^2}}{\eta} (\omega - 1) + a (\omega - 1)^{3/2}] where ρ2=1.279\rho^2 = 1.279, a=.91a = .91, η=.9942\eta = .9942 and ω\omega is the recoil velocity. The Isgur-Wise function is then used to obtain VcbV_{cb} from the recent experimental data of BˉDνˉ{\bar B} \to D^* \ell \bar\nu decay. Our best estimate of VcbV_{cb} is (34.7±2.5)×103(34.7 \pm 2.5) \times 10^{-3}, which is comparable to some of the latest estimates in the literature.Comment: 12 Pages, 6 Postscript figures (appended at the end with instructions, available also from [email protected]

    Decay constants, semi-leptonic and non-leptonic decays in a Bethe-Salpeter Model

    Full text link
    We evaluate the decay constants for the B and DD mesons and the form factors for the semileptonic decays of the B meson to DD and DD^* mesons in a Bethe-Salpeter model. From data we extract Vcb=0.039±0.002V_{cb}=0.039 \pm 0.002 from BˉDlνˉ{\bar B} \to D^* l {\bar{\nu}} and Vcb=0.037±0.004V_{cb}=0.037 \pm 0.004 from BˉDlνˉ{\bar B} \to D l {\bar{\nu}} decays. The form factors are then used to obtain non-leptonic decay partial widths for BDπ(K) B\to D \pi (K) and BDD(Ds)B \to D D (D_s) in the factorization approximation.Comment: 15 Pages, 3 Postscript figures (available also from [email protected]

    Turbulence in a free surface

    Full text link
    We report an experimental and numerical study of turbulent fluid motion in a free surface. The flow is realized experimentally on the surface of a tank filled with water stirred by a vertically oscillating grid positioned well below the surface. Particles floating on the surface are used to visualize the flow. The effect of surface waves appears to be negligible. The flow is unconventional in that it is confined to two dimensions but does not have squared vorticity as a conservation law, that it is not divergence free and that it inherits scaling features of the mean square velocity differences S_2(R) and the vorticity fluctuations Omega(R) from the bulk 3-d turbulence.Comment: 4 pages, 4 Postscript figure

    Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments

    Full text link
    A large number of treatments of the meson spectrum have been tried that consider mesons as quark - anti quark bound states. Recently, we used relativistic quantum "constraint" mechanics to introduce a fully covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure functions as a "quantum mechanical transform of Bethe-Salpeter equation". Here, we test its spectral fits against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and the popular semi-relativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and does so with the smallest number of interaction functions without additional cutoff parameters necessary to make other approaches numerically tractable. We discuss the distinguishing features of our model that may account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings that are crucial for its success when solved nonperturbatively for the analogous two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content

    Mutual synchronization and clustering in randomly coupled chaotic dynamical networks

    Get PDF
    We introduce and study systems of randomly coupled maps (RCM) where the relevant parameter is the degree of connectivity in the system. Global (almost-) synchronized states are found (equivalent to the synchronization observed in globally coupled maps) until a certain critical threshold for the connectivity is reached. We further show that not only the average connectivity, but also the architecture of the couplings is responsible for the cluster structure observed. We analyse the different phases of the system and use various correlation measures in order to detect ordered non-synchronized states. Finally, it is shown that the system displays a dynamical hierarchical clustering which allows the definition of emerging graphs.Comment: 13 pages, to appear in Phys. Rev.
    corecore