712 research outputs found

    Neutrino Masses and GUT Baryogenesis

    Full text link
    We reconsider the GUT-baryogenesis mechanism for generating the baryon asymmetry of the Universe. The baryon asymmetry is produced by the out of equilibrium decay of coloured Higgs bosons at the GUT scale, conserving B-L. If neutrinos are Majorana particles, lepton number violating interactions erase the lepton number excess, but part of the baryon asymmetry may be preserved, provided those interactions are not in thermal equilibrium when the sphaleron processes become effective, at T1012 GeVT \sim 10^{12}~ GeV. We analyse whether this mechanism for baryogenesis is feasible in a variety of GUT models of fermion masses proposed in the literature, based on horizontal symmetries.Comment: Talk presented at AHEP2003, Valencia, Spain, October 200

    Differential Regularization of a Non-relativistic Anyon Model

    Get PDF
    Differential regularization is applied to a field theory of a non-relativistic charged boson field ϕ\phi with λ(ϕϕ)2\lambda (\phi {}^{*} \phi)^2 self-interaction and coupling to a statistics-changing U(1)U(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the ϕϕϕϕ\phi {}^{*} \phi {}^{*} \phi \phi 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β\beta-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ,e)\beta(\lambda,e) vanish, and β(λ,e)\beta(\lambda,e) itself vanishes when the ``self-dual'' condition relating λ\lambda to the gauge coupling ee is imposed.Comment: 22 pages in ReVTEX (with a plaintext PostScript figure appended at end), MIT CTP #221

    Symmetry Non-restoration at High Temperature

    Get PDF
    We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with Z2×Z2Z_2 \times Z_2 symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the SU(2)U(1)SU(2) \otimes U(1) gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.Comment: 8 pages, LaTex with sprocl.sty, 1 figure. To appear in the Proceedings of the International Workshop ``Beyond the Standard Model: from Theory to Experiment'

    Can new generations explain neutrino masses?

    Get PDF
    In this talk we explore the possibility that the smallness of the observed neutrino masses is naturally understood in a modified version of the standard model with N extra generations of fermions and N right-handed neutrinos, in which light neutrino masses are generated at two loops. We find that with N = 1 it is not possible to fit the observed spectrum of masses and mixings while with N = 2 it is. Within this extension, we analyse the parameters which are allowed and the possible phenomenological signals of the model in future experiments. Contribution to the proceedings of Les Rencontres de Moriond EW 2011, Young Scientist Forum

    Selective epitaxial growth of graphene on SiC

    Full text link
    We present an innovative method of selective epitaxial growth of few layers graphene (FLG) on a pre-patterned SiC substrate. The methods involves, successively, the sputtering of a thin AlN layer on top of a mono-crystalline SiC substrate and, then, patterning it with e-beam lithography (EBL) and wet etching. The sublimation of few atomic layers of Si from the SiC substrate occurs only through the selectively etched AlN layer. The presence of the Raman G-band at ~1582 cm-1 in the AlN-free areas is used to validate the concept, it gives absolute evidence of the selective FLG growth.Comment: comments: 3 pages, reference 3 replace

    Surface MIMO: Using Conductive Surfaces For MIMO Between Small Devices

    Full text link
    As connected devices continue to decrease in size, we explore the idea of leveraging everyday surfaces such as tabletops and walls to augment the wireless capabilities of devices. Specifically, we introduce Surface MIMO, a technique that enables MIMO communication between small devices via surfaces coated with conductive paint or covered with conductive cloth. These surfaces act as an additional spatial path that enables MIMO capabilities without increasing the physical size of the devices themselves. We provide an extensive characterization of these surfaces that reveal their effect on the propagation of EM waves. Our evaluation shows that we can enable additional spatial streams using the conductive surface and achieve average throughput gains of 2.6-3x for small devices. Finally, we also leverage the wideband characteristics of these conductive surfaces to demonstrate the first Gbps surface communication system that can directly transfer bits through the surface at up to 1.3 Gbps.Comment: MobiCom '1

    Predicting the baryon asymmetry with degenerate right-handed neutrinos

    Full text link
    We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.Comment: 29 + 4 pages, 9 figures. Includes a comparison to the non-degenerate scenario. Matches published version in JHE

    The Fading of Symmetry Non-restoration at Finite Temperature

    Get PDF
    The fate of symmetries at high temperature determines the dynamics of the very early universe. It is conceivable that temperature effects favor symmetry breaking instead of restoration. Concerning global symmetries, the non-linear sigma model is analyzed in detail. For spontaneously broken gauge symmetries, we propose the gauge boson magnetic mass as a ``flag'' for symmetry (non)-restoration. We consider several cases: the standard model with one and two Higgs doublets in the perturbative regime, and the case of a strongly interacting Higgs sector. The latter is done in a model independent way with the tools provided by chiral Lagrangians. Our results clearly point towards restoration, a pattern consistent with recent lattice computations for global symmetries. In addition, we explicitly verify BRSTBRST invariance for gauge theories at finite temperature.Comment: 28 pages, Latex2e, 28 figures, two typos corrected, conclusions remain unchange

    Inverse Symmetry Breaking and the Exact Renormalization Group

    Get PDF
    We discuss the question of inverse symmetry breaking at non-zero temperature using the exact renormalization group. We study a two-scalar theory and concentrate on the nature of the phase transition during which the symmetry is broken. We also examine the persistence of symmetry breaking at temperatures higher than the critical one.Comment: 8 pages, 4 figure
    corecore