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Abstract

We discuss the question of inverse symmetry breaking at non-zero temperature
using the exact renormalization group. We study a two-scalar theory and concentrate
on the nature of the phase transition during which the symmetry is broken. We also
examine the persistence of symmetry breaking at temperatures higher than the critical
one.
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It has been known for a long time [1, 2, 3], that simple multiscalar models can exhibit
an anti-intuitive behaviour associated with more broken symmetry as the temperature is
increased. We refer to this behaviour as inverse symmetry breaking. This possibility may
have remarkable consequences for cosmology, solving the problem of topological defects,
thanks to the fact that the phase transition leading to their formation may never have
occurred during the thermal history of the Universe [4]. The existence of the phenomenon
for supersymmetric theories has been discussed in refs. [5]. However, doubts have been
raised on the validity of these results, which are based on the one-loop approximation to the
non-zero-temperature effective potential. This approximation is known to be unreliable for
the discussion of many aspects of phase transitions. Recently the effect of next-to-leading-
order contributions within perturbation theory has been investigated in ref. [6]. This has
been done through the study of gap equations, which are equivalent to a resummation of
the super-daisy diagrams of the perturbative series. Large subleading corrections have been
identified, which lead to a sizeable reduction of the parameter space where inverse symmetry
breaking occurs. The question of inverse symmetry breaking has also been studied through
the use of the renormalization group, with similar conclusions [7]. A variational approach
has been employed in ref. [8]. Contrary to the results of the above studies, a large-
N analysis seems to indicate that symmetry is always restored at high temperature [9].
However, the validity of this claim has recently been questioned in ref. [10]. A finite-lattice
calculation also supports the symmetry restoration at sufficiently high temperature [11],
even though the relevance of this result for the continuum limit is not clear.

In this letter we study the question of inverse symmetry breaking by employing the
exact renormalization group [12]. Our formalism is similar to that of ref. [7]. Our ap-
proach, however, is based on the real-time formulation of high-temperature field theories.
We investigate a two-scalar theory and we identify the universal behaviour associated with
the symmetry-breaking phase transition. Our study is based on an evolution equation for
the potential of the non-zero temperature theory. Using a polynomial ansatz for the po-
tential, we solve this equation and verify the conclusion of ref. [7] that inverse symmetry
breaking is confirmed by the renormalization-group approach. Moreover, we explore the
parameter space that leads to inverse symmetry breaking and compare it with the pertur-
bative predictions. In order to study the phase transition, we go beyond the polynomial
ansatz and consider a general dependence of the potential on the field that develops an
expectation value when the symmetry is broken. The resulting partial differential equation
is solved numerically with the use of appropriate algorithms [13]. The Wilson-Fisher fixed
point of the effective three-dimensional theory is shown to govern the dynamics near the
second-order phase transition.

We consider the simplest model that exhibits inverse symmetry breaking: a two-scalar
model with Z2 × Z2 symmetry. The tree-level potential is given by
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This potential is bounded for λ1,2 > 0 and

λ1λ2 > λ2

12 . (2)

The thermal correction to the above potential at the one-loop level is given by the well-
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known expression [14]

∆VT (φ1, φ2) = T
∫

∞

0

dk

2π2
k2 Tr log

[

1 − exp
(

− 1

T

√

k2 + M2
tr

)]

. (3)

Here M2
tr indicates the matrix of second derivatives of the tree-level effective potential

[

M2

tr(φ1, φ2)
]

i,j
=

∂2Vtr(φ1, φ2)

∂φi∂φj

, i, j = 1, 2 . (4)

When both eigenvalues of M2
tr are much smaller than T 2 (which happens for sufficiently

small couplings), the leading field-dependent correction takes the form

∆VT (φ1, φ2) ≃
T 2

24

[

(3λ1 − λ12)φ
2

1
+ (3λ2 − λ12)φ

2

2

]

+ . . . (5)

For the parameter range
3λ1 − λ12 < 0 , (6)

which can be consistent with the stability condition of eq. (2), the thermal correction for
the mass term of the φ1 field is negative. If the system is in the symmetric phase at zero
temperature with m2

1,2 > 0, there will be a critical temperature T 2
cr = 12m2

1
/(λ12 − 3λ1)

above which the symmetry will be broken 2. If the system is in the broken phase at T = 0,
the symmetry will never be restored by thermal corrections.

Our aim is to discuss the above scenario in the context of the Wilson approach to the
renormalization group. The main ingredient in this approach is an exact flow equation
that describes how the effective action of the system evolves as the ultraviolet cutoff is
lowered. We consider the lowest order in a derivative expansion of the effective action,
which contains a general effective potential and a standard kinetic term. At non-zero
temperature this approach can be formulated either in the imaginary-time [15] or in the
real-time formalism [16]. In the latter formulation, the evolution of the potential lowering
the cutoff scale Λ is given by the partial differential equation [16]

Λ
∂

∂Λ
VΛ(φ1, φ2) = −T

Λ3

2π2
Tr
{

log
[

1 − exp
(

− 1

T

√

Λ2 + M2
Λ

)]}

, (7)

where
[

M2

Λ
(φ1, φ2)

]

i,j
=

∂2VΛ(φ1, φ2)

∂φi∂φj

, i, j = 1, 2 . (8)

Notice the formal similarity with the Dolan-Jackiw one-loop result of eq. (3). The main
difference is that the ‘running’ mass matrix in the exponential of eq. (8) replaces the tree-
level one in eq. (3). The initial condition for the above equation, at a scale Λ0 ≫ T , is the
renormalized effective potential at zero temperature. In this work we consider small quartic
couplings, so that the logarithmic corrections of the zero-temperature theory can be safely
neglected. The initial condition for the evolution is a zero-temperature potential given
by eq. (1). Integrating the evolution equation (7), we obtain the non-zero-temperature

2 For 3λ2−λ12 < 0 the symmetry is broken in the φ2 direction. The discussion of this case is completely
analogous to the one we consider. Notice that it is not possible to break the symmetry in both the φ1 and
φ2 directions, because of the stability condition of eq. (2).
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effective potential in the limit Λ → 0. In the approximation that the ‘running’ mass matrix
on the r.h.s. of the evolution equation is taken to be constant, equal to the tree-level
mass matrix, the integration reproduces the perturbative result of eq. (3). The non-trivial
behaviour that we describe in the following paragraphs is obtained when the full scale-
dependence of the mass matrix is taken into account. An interesting limit corresponds to
the evolution at scales Λ ≪ T . Let us denote by

[

M̃2
Λ

]

l
the eigenvalues of the mass matrix

that satisfy
[

M̃2
Λ

]

l
<∼ Λ2. The remaining eigenvalues correspond to decoupled massive

modes that do not contribute to the evolution at the scale Λ [17]. Keeping the leading
contribution in the r.h.s. of eq. (7) and omitting the field-independent terms, we obtain

Λ
∂

∂Λ

(

VΛ(φ1, φ2)

T

)

= − Λ3

4π2
Tr
{

log
(

Λ2 +
[

M̃2

Λ

]

l

)}

. (9)

The rescaled potential VΛ/T has dimensions (mass)3 and its evolution is typical of that
of a three-dimensional theory [17, 18]. In the limit Λ ≪ T , dimensional reduction takes
place, and a four-dimensional theory at non-zero temperature behaves as an effective three-
dimensional one at T = 0. We can cast eq. (9) in a form that does not depend explicitly
on the scale Λ by defining the dimensionless parameters:

φ̄1,2 =
φ1,2√
ΛT

, V̄Λ(φ̄1, φ̄2) =
VΛ(φ1, φ2)

Λ3T
,

[

M̄2

Λ

]

l
=

[

M̃2
Λ

]

l

Λ2
. (10)

The dimensionless mass matrix M̄2
Λ is related to the rescaled potential V̄ through an

equation analogous to eq. (8). The evolution equation now reads

Λ
∂

∂Λ
V̄Λ(φ̄1, φ̄2) = −3V̄ − 1

4π2
Tr
{

log
(

1 +
[

M̄2

Λ

]

l

)}

, (11)

where again we have omitted the field-independent terms. The scale-invariant (fixed-point)
solutions of the effective three-dimensional theory can be obtained from the above equation
for Λ∂V̄Λ/∂Λ = 0.

Finding the solution of eq. (7) is a difficult task. An approximate solution can be
obtained [15, 7] by expanding the potential in a power series in the fields. In this way the
partial differential equation (7) is transformed into an infinite system of ordinary differential
equations for the coefficients of the expansion. This system can be solved approximately
by truncation at a finite number of equations. In effect, the potential is approximated by
a finite-order polynomial. As a first step, we follow this procedure and define the running
masses and couplings at the origin

m2

1,2(Λ) =
∂2VΛ

∂φ2
1,2

∣

∣

∣

∣

∣

φ1,2=0

, λ1,2(Λ) =
1

6

∂4VΛ

∂φ4
1,2

∣

∣

∣

∣

∣

φ1,2=0

, λ12(Λ) = − 1

2

∂4VΛ

∂φ2
1∂φ2

2

∣

∣

∣

∣

∣

φ1,2=0

. (12)

The corresponding evolution equations can be obtained by differentiating eq. (7) and
neglecting the higher derivatives of the potential. We find

Λ
∂

∂Λ
m2

1,2 = −6C1,2λ1,2 + 2C2,1λ12

Λ
∂

∂Λ
λ1,2 = −18D1,2λ

2

1,2 − 2D2,1λ
2

12 (13)

Λ
∂

∂Λ
λ12 = −6D1λ1λ12 − 6D2λ2λ12 + 8

C1 − C2

m1
2 − m2

2

λ2

12
,
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with

C1,2 =
Λ3

4π2

N(ω1,2)

ω1,2
, D1,2 =

∂C1,2

∂m2
1,2

, ω2

1,2 = Λ2 + m2

1,2 , (14)

and N(ω) = [exp(ω/T ) − 1]−1 the Bose-Einstein distribution function. For ω1,2 ≪ T we
have

C1,2 →
Λ3

4π2

T

Λ2 + m2
1,2

, (15)

and the above equations agree with those considered in ref. [7] in the same limit. For
ω1,2 ≫ T there is no running, because of the exponential suppression in the Bose-Einstein
function.

We have solved numerically the system of equations (13) and determined the range of
zero-temperature parameters that lead to inverse symmetry breaking. In fig. 1 we present
the results for a zero-temperature theory with positive mass terms m2

1
(Λ0) = m2

2
(Λ0)

and λ2(Λ0) = 0.3. The temperature has been chosen much higher than the critical one
(T = 500m1(Λ0)). The system (13) has been integrated from Λ0 ≫ T down to Λ = 0,
where the thermally corrected masses and couplings at non-zero temperature have been
obtained. A negative value for the mass term m2

1
at Λ = 0 has been considered as the

signal of inverse symmetry breaking. This has been achieved for the parameter range of
λ1(Λ0), λ12(Λ0) above the line (a) in fig. 1. In the same figure we plot the stability bound
of eq. (2). The allowed range is below the line (b). We also include the perturbative
prediction of eq. (6) for the range that leads to inverse symmetry breaking. It lies above
the line (c). The phenomenon of inverse symmetry breaking is confirmed by our study, in
agreement with ref. [7], where the imaginary-time formulation of the renormalization-group
approach has been used. We observe that the renormalization-group treatment eliminates
a large part of the parameter space allowed by perturbative theory. This is in agreement
with the results of ref. [6], where the gap-equation approach has been followed. Notice that
lines (a) and (c) approach each other near the origin, where perturbation theory becomes
more reliable.

The reliability of our conclusions crucially depends on whether the solution of the system
of truncated equations (13) provides an approximate solution to the full partial differential
equation (7). In ref. [7], this has been checked by increasing the level of truncations and
verifying the convergence of the results. We follow here a different approach that relies on
the numerical integration of eq. (7) through the algorithms discussed in ref. [13]. These
algorithms have been used for the integration of the evolution equations for potentials that
depend on one field only [13, 19]. The generalization to the two-field case is straightforward.
However, limitations in computer time have prevented us from reaching full numerical
stability for the results. For this reason, we restrict our discussion of eq. (7) along the φ1

axis, which is the direction of expected symmetry breaking for our choice of couplings. We
approximate the potential by the expression

VΛ(φ1, φ2) = VΛ(φ1) +
1

2
m2

2
(Λ)φ2

2
+

1

4
λ2(Λ)φ4

2
− 1

2
λ12(Λ)φ2

1
φ2

2
. (16)

The evolution of m2
2
(Λ), λ2(Λ) and λ12(Λ) is determined through the truncated eqs. (13).

However, the full φ1 dependence is preserved through the numerical integration of eq. (7),
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with the eigenvalues of the mass matrix M2
Λ

given by

[

M2

Λ

]

1
=

∂2VΛ(φ1)

∂φ2
1

and
[

M2

Λ

]

2
= m2

2
(Λ) − λ12(Λ)φ2

1
. (17)

This treatment permits a reliable study of the order of the symmetry-breaking phase tran-
sition. The appearance of secondary minima of the potential at some point in the evolution
can be studied in detail. As a result, we can distinguish between first-and second-order
phase transitions. This is not possible when local expansions of the potential, such as the
one leading to eqs. (13), are employed.

In fig. 2 we present the evolution of the potential for zero-temperature parameters
m2

1
(Λ0) = m2

2
(Λ0), λ1(Λ0) = 0.01, λ2(Λ0) = 0.3, λ12(Λ0) = 0.05. The location of this

parameter choice on the plot of fig. 1 is denoted by a black square. It is within the region
for which inverse symmetry breaking is expected. The temperature is chosen very close to
the critical one: Tcr/m1(Λ0) ≃ 33.3. This value is in very good agreement with the result
of ref. [7], for the same choice of zero-temperature parameters. It deviates significantly
from the perturbative prediction Tcr/m1(Λ0) ≃ 24.5. We use the rescaled variables defined
in eqs. (10), which permit the identification of the fixed points that may be relevant for
the phase transition. We plot the derivative ∂V̄Λ/∂ρ̄1 of the potential as a function of the
variable ρ̄1 = φ̄2

1
/2, for decreasing Λ. The early stages of the evolution of the potential,

when its curvature at the origin becomes negative, are not clearly visible in this plot. The
reason is that ∂V̄Λ/∂ρ̄1 is very small for large Λ. The important point in this figure is the
flow of the potential towards a scale-invariant solution (marked by WF) during the later
stages of the evolution. This solution corresponds to the Wilson-Fisher fixed point of the
effective three-dimensional theory. For Λ → 0 the theory leaves the fixed point and flows
towards the phase with symmetry breaking. The evolution can also be described in terms
of the parameters defined in eqs. (12). Their rescaled versions

m̄2

1,2(Λ) =
m2

1,2(Λ)

Λ2
and λ̄1,2,12(Λ) =

λ1,2,12(Λ)T

Λ
(18)

are obtained from the rescaled potential of eqs. (10) through relations analogous to eqs. (12).
(Notice that m̄2

1
(Λ) is given by the value of ∂V̄Λ/∂ρ̄1 for ρ̄1 = 0 in fig. 2.) We present the

evolution of all these parameters in figs. 3 and 4. In both these plots we observe that
the mass term m2

1(Λ) turns negative at some scale Λ ∼ T . The mass term m2
2(Λ) stays

positive and grows as Λ decreases. For Λ ≪ T we observe that m2
2
(Λ) ≫ Λ2 and the φ2

field decouples. Eventually, for Λ → 0, the renormalized parameters m2
2(Λ) and λ2(Λ) take

constant values. After the decoupling of the φ2 field, only the fluctuations of the φ1 field
contribute to the evolution. In this regime, the evolution equation for the potential can be
written in the form of eq. (11), with only the eigenvalue

[

M̄2
Λ

]

1
= ∂2V̄Λ/∂φ̄2

1 contributing.

The scale-invariant solution of the resulting equation corresponds to the Wilson-Fisher fixed
point of the one-scalar three-dimensional theory. Its explicit form can be seen in fig. 2. We
conclude that the role of the φ2 field is to trigger the inverse symmetry breaking by inducing
a negative mass term m2

1
(Λ) at the early stages of the evolution. It subsequently decouples

and the dynamics of the phase transition is governed by the Wilson-Fisher fixed point of
the one-scalar three-dimensional theory. The resulting phase transition is of second order.
Its universal behaviour can be parametrized in terms of critical exponents and amplitudes.
For a detailed discussion see ref. [15].
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The evolution close to the fixed point is apparent in fig. 3, in the range where the rescaled
parameters m̄2

1(Λ), λ̄1(Λ) become constant. Their fixed-point values are m̄2
1,fp ≃ −0.44,

λ̄1,fp ≃ 3.2. In this regime, the parameters m2
1
(Λ), λ1(Λ) evolve towards zero according

to m2
1(Λ) = m̄2

1,fpΛ
2, λ1(Λ) = λ̄1,fpΛ/T (see fig. 4). This explains why the fixed point

is relevant very close to the phase transition. If the temperature is chosen such that the
evolution stays close to the fixed point for a long ‘time’ t = log(Λ/T ), the curvature of the
potential at the origin is very small at the end of the evolution. Through sufficient fine-
tuning of the temperature, the curvature can be made arbitrarily small. This is the criterion
for the occurrence of a second-order phase transition. Notice that the renormalized quartic
coupling λ1(Λ = 0) is also expected to be zero at the critical temperature [17]. According
to eqs. (13) the coupling λ12(Λ) evolves as λ12 ∼ Λa, with a = 3λ̄1,fp/2π2(1+m̄2

1,fp)
2 ≃ 1.6.

For λ2(Λ) we obtain λ2(Λ) = λ2(Λi) + c
(

Λ2a−1 − Λ2a−1

i

)

/(2a − 1), where Λi is the scale
at which the fixed-point solution is initially approached, and c a calculable constant. The
predicted evolution of λ12(Λ) and λ2(Λ) is confirmed by fig. 4. If we had used the truncated
equations (13) for the discussion of the evolution of m2

1
(Λ) and λ1(Λ), as in ref. [7], we

would have obtained a = 1/3. This would have predicted an unphysical, singular behaviour
λ2(Λ) ∼ −Λ−1/3 for Λ → 0. Our solution of the evolution equation for the full potential
along the φ1 axis resolves this problem, and describes the decoupling of the φ2 field properly.

In conclusion, we have used the real-time formulation of the exact renormalization group
in order to study the question of inverse symmetry breaking in the context of the two-scalar
theory of eq. (1). We have verified the conclusion of ref. [7] that inverse symmetry breaking
is confirmed by the renormalization-group approach. We have also determined the param-
eter range that leads to inverse symmetry breaking, through appropriate truncations of the
partial differential equation that describes the evolution of the potential. This parameter
range is significantly smaller than the perturbative prediction, in agreement with ref. [6].
We have also obtained a numerical solution of the evolution equation for the full poten-
tial along the φ1 axis, without relying on truncations in that direction. In this way we
have obtained a detailed picture of the symmetry-breaking phase transition. The φ2 field
triggers the symmetry breaking along the φ1 direction and subsequently decouples. The
phase transition is of second-order, governed by the Wilson-Fisher fixed point of the effec-
tive three-dimensional theory. Our improved treatment gives no indication of symmetry
restoration for the range of temperatures above the critical one, in which we obtain stable
numerical solutions.
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Figures

Fig. 1 The parameter space that leads to inverse symmetry breaking (λ2 = 0.3).

Fig. 2 The derivative V̄ ′

Λ = ∂V̄Λ/∂ρ̄1 of the potential as a function of ρ̄1 = φ̄2
1/2 for decreasing

Λ, for a theory very close to the phase transition.

Fig. 3 The evolution of the rescaled masses and couplings for a theory very close to the
phase transition.

Fig. 4 The evolution of the masses and couplings for a theory very close to the phase tran-
sition.
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