1,107 research outputs found

    Free-form, form finding and anisotropic grid shell

    Full text link
    p. 966-876The new geometrical developments open new perspectives for free-form design, making it possible to escape from planar triangular or quadrilateral discretizations. Recent advances in theory algorithms allow for the discretization of any surface using only single curvature panels thus allowing the realisation of smooth double curvature glazed envelops of any form. Grid shell structures usually present a nearly in plane uniform behaviour, but previous realisations have shown that grid shells can be designed also according to an anisotropic inplane arrangement. The control of principal direction and the fine tuning of the stiffness of the different structural elements (arcs, cables etc.) is a tool for adjusting the form-finding thus controlling the resulting geometry. Moreover, the form-finding can also be performed without researching a constant stress (self weight); in this case an even wider range of forms become possible. These new geometrical and structural approaches have been coupled together and tested in re-designing, as a case study, the glazed roof of the Neumunster Abbey in Luxembourg. Such approach allowed for the conception of an efficient structure supporting a smooth double curvature glass skin, made out of only single curvature panels, perfectly coherent with the perimeter of the courtyard i.e. matching all the edges without any gaps.Baldassini, N.; Raynaud, J. (2010). Free-form, form finding and anisotropic grid shell. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/696

    On Nori's Fundamental Group Scheme

    Full text link
    We determine the quotient category which is the representation category of the kernel of the homomorphism from Nori's fundamental group scheme to its \'etale and local parts. Pierre Deligne pointed out an error in the first version of this article. We profoundly thank him, in particular for sending us his enlightning example reproduced in Remark 2.4 2).Comment: 29 page

    Intercellular ultrafast Ca(2+) wave in vascular smooth muscle cells: numerical and experimental study.

    Get PDF
    Vascular smooth muscle cells exhibit intercellular Ca(2+) waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca(2+) wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca(2+) wave and it was suggested to be the result of the interplay between membrane potential and Ca(2+) dynamics which depended on influx of extracellular Ca(2+), cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca(2+) wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca(2+) wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca(2+) wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca(2+) waves in smooth muscle cells

    Alginate for cardiac regeneration: From seaweed to clinical trials.

    Get PDF
    Heart failure is a growing endemic in the aging Western population with a prevalence of over 20 million people worldwide1. Existing heart failure therapies are unable to reverse heart failure and do not address its fundamental cause, the loss of cardiomyocytes2. In order to induce myocardial regeneration for the myocardium and the heart valve, facilitate self-repair, improve tissue salvage, reduce or reverse the adverse-remodeling and ultimately achieve long-term functional stabilization and improvement in the heart function, novel strategies for therapeutic regeneration are being developed which are aiming to compensate for the insufficient and low intrinsic regenerative ability of the adult heart3. Similarly, valve replacement with mechanical or biological substitutes meets numerous hurdles. New approaches using multicellular approaches and new material are extensively studied. Most of those strategies depend on biomaterials that help to achieve functional integrated vasculogenesis and myogenesis in the heart/tissue. Especially for failed heart valve function a number of therapeutic approaches are common from corrective intervention to complete replacement4. However the complexity of the heart valve tissue and its high physical exposure has led to a variety of approaches, however therapeutic regeneration needs to be established. Beside other approaches alginate has been identified as one building block to achieve therapeutic regeneration. Alginate is a versatile and adaptable biomaterial that has found numerous biomedical applications which include wound healing, drug delivery and tissue engineering. Due to its biologically favorable properties including the ease of gelation and its biocompatibility, alginate-based hydrogels have been considered a particularly attractive material for the application in cardiac regeneration and valve replacement techniques. Here, we review current applications of alginate in cardiac regeneration as well as perspectives for the alginate-dependent, cardiac regeneration strategies

    Electrical and structural characterisation of plasma-polymerized TEOS thin films as humidity sensors

    Get PDF
    In this study, we used plasma polymerization of TEOS to deposit thin water molecule sensitive layers on two intredigitated aluminum electrodes evaporated on glass substrate. Electrical and structural analyses of the deposited sensitive layers have been evaluated through current-impedance responses and FTIR spectroscopy. The elaborated humidity resistive sensor exhibited a detectable response to relative humidity (RH) percentages ranging from 20 to 95%. The films showed good sensitivity to water molecule due to the presence of hydroxyl groups OH. These groups provide the adsorption sites for water and play an important role to the humidity sensor properties. The low impedance, good sensitivity as characterized by a linear change in impedance from 106 to 103 Ω over RH interval of 20–80% and low observed hysteresis of about 4%, make the elaborated layer a promising candidate for humidity sensors development.In this study, we used plasma polymerization of TEOS to deposit thin water molecule sensitive layers on two intredigitated aluminum electrodes evaporated on glass substrate. Electrical and structural analyses of the deposited sensitive layers have been evaluated through current-impedance responses and FTIR spectroscopy. The elaborated humidity resistive sensor exhibited a detectable response to relative humidity (RH) percentages ranging from 20 to 95%. The films showed good sensitivity to water molecule due to the presence of hydroxyl groups OH. These groups provide the adsorption sites for water and play an important role to the humidity sensor properties. The low impedance, good sensitivity as characterized by a linear change in impedance from 106 to 103 Ω over RH interval of 20–80% and low observed hysteresis of about 4%, make the elaborated layer a promising candidate for humidity sensors development

    An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model

    Get PDF
    An empirical model for the temperature of subsurface water entrained into the ocean mixed layer (Te) is presented and evaluated to improve sea surface temperature anomaly (SSTA) simulations in an intermediate ocean model (IOM) of the tropical Pacific. An inverse modeling approach is adopted to estimate Te from an SSTA equation using observed SST and simulated upper-ocean currents. A relationship between Te and sea surface height (SSH) anomalies is then obtained by utilizing a singular value decomposition (SVD) of their covariance. This empirical scheme is able to better parameterize Te anomalies than other local schemes and quite realistically depicts interannual variability of Te, including a nonlocal phase lag relation of Te variations relative to SSH anomalies over the central equatorial Pacific. An improved Te parameterization naturally leads to better depiction of the subsurface effect on SST variability by the mean upwelling of subsurface temperature anomalies. As a result, SSTA simulations are significantly improved in the equatorial Pacific; a comparison with other schemes indicates that systematic errors of the simulated SSTAs are significantly small apparently due to the optimized empirical Te parameterization. Cross validation and comparisons with other model simulations are made to illustrate the robustness and effectiveness of the scheme. In particular it is demonstrated that the empirical Te model constructed from one historical period can be successfully used to improve SSTA simulations in anothe

    The integral monodromy of hyperelliptic and trielliptic curves

    Full text link
    We compute the \integ/\ell and \integ_\ell monodromy of every irreducible component of the moduli spaces of hyperelliptic and trielliptic curves. In particular, we provide a proof that the \integ/\ell monodromy of the moduli space of hyperelliptic curves of genus gg is the symplectic group \sp_{2g}(\integ/\ell). We prove that the \integ/\ell monodromy of the moduli space of trielliptic curves with signature (r,s)(r,s) is the special unitary group \su_{(r,s)}(\integ/\ell\tensor\integ[\zeta_3])
    corecore